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Marta KORNAFEL1 
Ivan TELEGA2 

Natural capital in economic models3 

1. INTRODUCTION

 The problem of economic sustainability primarily covers issues of intergenera-
tional equity (i.e. the concern for the well-being of future generations), the 
preservation of the capacity of natural capital to provide benefits important for 
social welfare, as well as the possibility of substituting natural capital with other 
forms of capital (Toman at al., 1995, p. 140). The role of natural capital, as the 
factor of growth and economic development, unfortunately is not emphasized 
strong enough in the mainstream economics. Sustainability concerns make the 
role of natural capital in the process of creating the social welfare more vivid. 
Many of interdisciplinary research indicate the crucial role of biodiversity for the 
ability of ecosystems to provide the ecosystem services (Cardinale at al., 2012, 
p. 59–67). There exists a fundamental discrepancy on the theoretical and meth-
odological level between the mainstream and ecological economics. The most
important issue is the substitutability of natural capital by another forms of capital
(e.g. manufactured, human, etc.)

In the area of sustainability economics a lot of research was done in both, 
theoretical and empirical aspects (Pezzey, Toman, 2002). However, still the 
main approach is to use the perspective of neoclassical economics. It seems 
reasonable to introduce some aspects of ecological economics to the main-
stream economics, in particular – to the analysis of the growth in the long run. 

The goal of our paper is to make a critical analysis of selected growth models 
that use the notion of natural capital and construct the alternative model. In par-
ticular we treat the natural capital as a renewable resource and we use CES 
production function, weakening the assumption of substitutability of natural capi-
tal with other forms of capital. Therefore, our approach follows the main postu-
late of ecological economics, i.e. limited substitutability of natural resources. 

1 Cracow University of Economics, Faculty of Finance and Law, Department of Mathematics, 27 
Rakowicka St., 31–510 Cracow, Poland, corresponding author – e-mail: marta.kornafel@uek.krakow.pl. 

2 Cracow University of Economics, Faculty of Finance and Law, Department of Mathematics, 
27 Rakowicka St., 31–510 Cracow, Poland. 

3 Publication was financed from the funds granted to the Faculty of Finance and Law at Cracow 
University of Economics, within the framework of the subsidy for the maintenance of research poten-
tial. 
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2. THE BASIC ASPECTS OF ECOLOGICAL ECONOMICS – CONCLUSIONS 

FOR MODELLING 
 

 The natural capital is a quite new concept, being developed from the begin-
ning of 90s. According to Constanza, Daly (1992) the natural capital is the ex-
tension of economic concept of capital as ”a stock that yields a flow of valuable 
goods or services into the future” on environmental goods and services. The 
natural capital is understood differently in the mainstream economics and eco-
logical economics. The mainstream economics focuses the attention on the role 
of natural resources (in particular – fossil fuels), while the ecological economics 
emphasizes those elements of natural capital, which creates ecosystems. The 
natural capital in the form of ecosystems provides many diverse ecological ser-
vices for both, production and consumption, as well as for the maintenance of 
the life on the Earth. It may be said that the ecological services represent the 
stream of benefits, gained by humans from natural capital4. 
 One of the first complete classifications of ecological services was the one 
proposed by Constanza at al. (1998, p. 253–260). The classification, which is 
most often referred to in the recent literature, is the one presented in the Milleni-
um Ecosystem Assessment – thirty one ecological services were identified and 
grouped into four categories: supporting, provisioning, regulational and cultural 
(see Millenium Ecosystem Assessment, 2005, p. 40). 
 According to England (1998, p. 8) the starting point for defining the natural capi-
tal should be the theory of production by Georgescu-Roegen, which recognizes two 
main elements of production: funds elements, which represent the agents of pro-
duction process, and flow elements, which are used and transformed by agents. 
 One of the most important problems that are considered in ecological econom-
ics is the issue of substitutability of natural capital by another form of capital (mate-
rial production factors, knowledge, etc.). Ecological economics follows the rule of 
limited substitutability resulting in the idea of strong sustainability (Hediger, 2006). 
 Moreover, ecological economics postulates the existence of some limiting 
boundaries for usage of nature. Passing them makes a serious danger for eco-
systems sustainability in the local and global scales. The attempt of estimation of 
those values was undertaken in the international research project (Rockström at 
al., 2009). According to critics setting the limits of growth is quite arbitrary if one 
takes into account that six of the mentioned limits, i.e. changes in the land use, 
loss of biodiversity, nitrogen level, consumption of the drinking water, chemical 
and aerosol pollutions, have local character, not global. Therefore there is no 

                      
4 The links between biodiversity and the provision of services by ecosystems are important argu-

ments for the protection of biodiversity and against the disappearance of species. However, as noted 
by Wilson (2002): ”The loss of the ivory-billed woodpecker has had no discernible effect on American 
prosperity. A rare flower or moss could vanish from the Catskill forest without diminishing the re-
gion's filtration capacity. But so what? To evaluate individual species by their known practical value 
at the present time is business accounting in the service of barbarism.” 
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limit, that after passing it those processes start functioning in a fundamentally 
different way. There is too little evidence to state that breaking the limits in any 
of the mentioned areas would have negative influence on the social welfare 
(Nordhaus at al., 2012). The notion of critical natural capital is also developed 
within the ecological economics (Ekins, 2003; Chiesura, De Groot, 2003). 
 Taking into account the discussed issues we claim that the ecological growth 
models should meet the following assumptions: 
1. The natural capital and other forms of capital have limited substitutability. This 

fact may be modelled in two nonexcluding ways – choosing a proper produc-
tion function (CES or Leontieff) or taking some additional assumptions. 

2. The natural capital has significant influence on the social welfare via econom-
ic sphere (resource function) as well as via direct influence on the well-being 
(regulatory and cultural functions). This should be captured by utility function, 
in particular in those models, where analysis is done from the social planner 
point of view. 

3. The natural capital in the form of ecosystems is characterized by its internal 
dynamics and regeneration ability. At the same time the economic activity has 
negative effect on the resources usage and deterioration of natural environ-
ment, what influences the rate of regeneration and the availability of ecologi-
cal services. Therefore the direction of evolution of natural capital is the result 
of several opposing factors. 

4. The existence of the critical thresholds is postulated, so that the evolution of 
natural capital should be limited from below.  

 Ultimately, the adoption of a ”capital” definition of sustainability leads to 
a change in the research perspective. Instead of models describing the growth 
process of aggregate output (standard growth models), one should rather focus 
on modeling the process of shaping the resources of all types of capital, which 
are considered crucial for social well-being. Apart from the assumptions con-
cerning the dynamics of particular types of capital, the assumptions as to the 
nature of mutual relations between them are also important. 
 

3. SELECTED APPROACHES TO MODELLING NATURAL CAPITAL  
IN ECONOMIC PROCESSES 

 
 Literature on modelling the natural resource usage is abundant. However, the 
works in which authors directly use the term natural capital and try to describe its 
dynamics are less frequent. Another criterion for the selection of quoted results 
was that they present some characteristic and interesting ways of capturing the 
idea of natural capital in economic models - either using a particular form of pro-
duction function (Kraev, 2002), considering a two-sector model (Commoli, 2006), 
a combination with the idea of material consumption (Rodrigues at al., 2005) or 
directly modeling the interaction between the four kinds of capitals (Roseta-
Palma at al., 2010). Undoubtedly, in no way does our selection exhaust the rich 
literature of the subject. 
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 The basic principles of ecological economics and the issues of formal descrip-
tion are discussed by Kraev (2002). Assuming strong complementarity between 
anthropogenic (ܪ) and natural (ܰ) capitals (what was expressed by the choice of 
Leontieff production function ܻ = min(ܪܣ, (ܰܥ 5), an unbounded economic 
growth is impossible. However, the economy reacts differently in the long run 
depending whether the natural capital is treated as the stock or the flow (denot-
ed by ݊) in the production function. The consequences of depletion of the flow 
are much more drastic – they lead to the zero production almost immediately 
(see Kraev, 2002, p. 281). As an attempt to weaken the assumption about 
strong complementarity Kraev considers a particular case of CES function: 
 
 ܻ = ି(ܪܣ)) + )ିଵ ,     0ି(݊ܥ) <  < ∞,    (1)

 
where  is a parameter, characterizing the admissible rate of substitution6. 
 
 The production function is characterized by weak complementarity, and simul-
taneously the main conclusion remains the same. If ܪܣ ≫ ܻ then ,݊ܥ ≈ -Ana .݊ܥ
logically to the production sector, the author extends the rules of ecological eco-
nomics to consumption system. He assumes that the social welfare depends also 
on the ecological services (like clean air, water, the landscape), which are com-
plementarities for the produced goods (market goods), usually considered in mi-
croeconomics. The utility function may have different form, nevertheless it should 
take into account the fact of limited substitutability. 
 Commoli (2006) considers two-sector economy, in which the produced capital ܭ may be used for production of either, intermediate or final goods, i.e. ܭ = ௫ܭ +  ௫ andܭ ௬. The intermediate goods7 are produced with use of capitalܭ
natural resources ܺ according to the production technology ܯ = ,௫ܭ)ܪ ܺ), in 
which the substitution is allowed. The final goods are produced with use of ܯ and capital ܭ௬, which are complementarities. Therefore: 
 
ܯ  = ,௫ܭ)ܪ ܺ) = ܺఈ ܭ௫ଵିఈ   ܽ݊݀  ܨ൫ܯ, ௬൯ܭ = min ൬ܯ, ௬ܿ൰ , (2)ܭ

 
where 0 < > ߙ 1 and ܿ > 0 (parameters of model). The natural capital is con-
sidered in two forms: as the stock (ܺ) and as the flow (ܯ). Moreover, natural and 
man-made capitals are substitutes in intermediate goods sector and comple-
mentarities in the production of final goods. 
                      

5 A, C are efficiency factors. 
6 Leontieff function is the limiting case for ܻ when  → ∞. 
7 The intermediate goods may be understood as extracted resources. 
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 Commoli assumes that the stock is renewable, i.e. ܺ = ݃(ܺ) −  where ݃ is ,ܯ
strictly concave biological recruitment function. Most common assumption is that ݃(ܺ) = ܺ ߛ ቀ1 − ௌቁ with some parameter ߛ > 0 being intrinsic growth rate of the 
renewable resources and ܵ > 0 being a parameter describing the environmental 
carrying capacity. 
 Under the standard assumptions on accumulation of produced capital, the 
author proves that there exists a stable stationary point satisfying ܭ > 0  

and ܺ > 0 iff the condition: ߛ > ቀ௦ఋ − ܿ ቁభషഀഀ   is fulfilled (see Commoli, 2006,  
p. 159). If the economy is in the stationary state (i.e. ܭሶ = 0 and ሶܺ = 0), then the 
condition above takes form: ߛ > ቀೣ ቁଵିఈ

. As the right-hand side of the last in-

equality is not greater than ೣ , the sufficient condition for existence of stationary 
point can be interpreted as follows: the intrinsic growth rate of the renewable 
resource be at least as great as the long-run equilibrium ratio of manufactured to 
natural capital in the raw materials sector of economy (Commoli, 2006, p. 159). 
 Rodrigues at al. (2005) propose a combination of neoclassical growth theory 
with the concept of allocation of natural capital and economy’s dematerialization 
(the concept developed among others by Bringezu, 2003). They assume that 
anthropogenic impact depends on the degree of material intensity of the econo-
my. Natural capital usage influences negatively the endogenous dynamics of 
ecosystems, reducing the volume of available ecological services. The authors 
show that under some conditions an unbounded growth is possible, keeping the 
natural capital at some constant level. In this paper the natural capital is divided 
between a production (fraction ݑ) and ”free” natural capital (fraction 1 − -di ,(ݑ
rectly influencing the social welfare. The natural capital has a character of re-
newable stock, but it also depends on carrying capacity ܥܥ), which evolves8. 
The dynamics of natural capital is (ݎ is the growth parameter of ܰ): 
 
ݐ݀ܰ݀  = ܥܥ)ܰݎ − ܰ) − ܲ. (3)
 
 An increase of free natural capital increases ܥܥ, which grows with the growth 
of the free part of natural capital. This is why the dynamics of ܥܥ is described by 
(see Rodriguez at al., 2005, p. 385): 
 
ݐ݀ܥܥ݀  = ݈(1 − 1)݀ ܰ(ݑ − ݐ݀ܰ(ݑ  = ݈ܰ ݐ݀ܰ݀ − ݈1 − ݑ ݐݑ݀݀ .   (4)

 
where ݈ > 0 is a constant parameter determining the growth of ܥܥ. The dyna-
mics of natural capital is affected by structural influences (via dependence on ݑ) 
                      

8 Assuming a constant ܥܥ implies that despite the damage in ecosystem it may always renew to 
the equilibrium value defined by ܥܥ. Notice that ܥܥ is the upper bound of natural capital stock. 
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and is characterized by endogenous dynamics of ܥܥ. Anthropogenic pressure ܲ 
depends on amount of materials used in production and consumption. If material 
intensity is denoted by ݉, then ܲ = ܻ݉. Notice that ݉ is a quantity dependent on 
the technology ܣ and the production ܻ. The authors assume that the structure of 
economy changes in result of the growth of production, what influences the 
quantity ݉. Therefore: 
 
 ܲ = ݉ିܣܻ, ݉ = ݉ିܣܻିଵ, (5)
 
where ܽ, ݊, ݉ are constant parameters9. 
 
 The production and capital accumulation are assumed in form: 
 
ሶܭ  = ܻ − ܥ − (6) ,ܭ ߜ
 
   ܻ = ଵିఈ.   (7)(ܰݑ) ఈܭܣ
 
 In addition, the dependence between growth rates of technology and capital 
are assumed: 
 
ܣሶܣ  = ݃ ቆܭሶܭቇ, (8)

 
with some increasing, concave and bounded function ݃, for which ݃(⋅) ≡  0 for 
negative arguments. The utility function accounts the benefits from ”free” natural 
capital part: 
 
 ܷ = ln ܥ + ߶ ln൫(1 − ൯. (9)ܰ(ݑ
 
 An important characteristic of this function is that consumption is independent 
of environmental conditions. In biophysical steady-state ሶܰ = ሶܥܥ = 0, what im-
plies constant natural capital stock. The authors show that the economic growth 
is possible with constant level of natural capital, if the ratio of parameters ܽ/݊  
is bounded10, i.e.: 
 
 1 + ܽ݃ᇱ  ܽ݊  11 − (10)    .ߙ
 
 Moreover, if the constraints (dependent on ܰ∗ and ܥܥ∗) on initial values of ܣ and ܭ are met, then it is possible to maintain increasing consumption (see 
Rodriguez at al., 2005, p.393). 
                      

 9 ݉ is scale parameter. If ݊ < 1, then structural changes lead to a decrease in ݉. For example, 
the increase in share of service sector leads to smaller material intensity of the economy. 

10 Here ݃ᇱ = ݃′(0) is maximal value of ݃′. 
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 In many works, the role of human and social capital in creating prosperity is 
highlighted. Attempts to combine four capitals (i.e. produced, human, social and 
natural) into one model were undertaken by Roseta-Palma at al. (2010), thus 
referring to the ”capital” definition of sustainable development proposed by 
Pearce (see Pearce, Atkinson, 1998, p. 9). 
 It is also worth noting that attempts were also made to empirically evaluate 
the stock of individual capital types (World Bank, 2006, 2011), one of the con-
clusions of which was to indicate the specific role of human and social capital for 
the development of countries. It seems that the advantage of the proposed 
model is an attempt to take account of the relationships between different kinds 
of capitals. By denoting ܭ, ,ுܭ ,ௌܭ  ே respectively manufactured, human, socialܭ
and natural capital, the evolution of each and the interactions are defined as 
follows (Roseta-Palma at al., 2010, p. 604): 
 
ሶܭ  = ܻ − ܥ − . (11)ܭߜ
 
 Human capital can be used in the production, education, accumulation of 
social capital and environmental protection (research and development, emis-
sion reduction, etc.). Thus, respectively, ܭு = ܪ + ுܪ + ௌܪ +  :ே andܪ
 
ሶுܭ  = ுܪߦ + ௌܭߙ − ு,    (12)ܭுߜ
 
where ߦ > 0, ߙ ≥  0 are efficiency parameters. 
 
 Notice that human and social capitals are substitutable in the creation of hu-
man capital. Social capital is ”produced” with the use of human capital (via the 
creation of appropriate institutions and regulations), but at the same time its 
dynamics at all times depends on the size of the social capital, i.e.: 
 
ሶௌܭ  = ௌܪ ߱ + Ω ܭௌ, (13)
 
where ߱ is again the efficiency parameter, and Ω may be positive or negative. 
The natural capital is again renewable resource, i.e.: 
 
ሶேܭ  = (ேܭ)ܴ − ܰ + ܲ,    (14)
 
where ܴ(ܭே) is natural regeneration rate, defined similarly to Rodrigues at 
al. (2005). ܰ denotes the stream of natural resources used in production, and ܲ represents the positive effect of environmental protection. ܲ depends posi-
tively on social capital ܭௌ and the human capital ܪே engaged in environmental 
protection, while negatively on manufactured capital ܭ. This dependence is 
described in the form: 
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 ܲ = ݉ ேఢܪ  ఝܭௌܭ , (15)

 
where ݉ is the scale parameter, and ߳ , , ߢ ߮ are respective elasticities. Produc-
tion is aggregated via Cobb-Douglas technology, i.e. the substitutability between 
capitals is allowed: 
 
 ܻ = ,ௌఙܭ ఎܪ ఉ ܰఔܭ + ߚ + ߥ ߟ = 1. (16)
 
 The essential feature of the model is the broader definition of social welfare, 
which depends not only on consumption, but also on the state of the environ-
ment (natural capital stock) and the level of trust and cooperation in society (so-
cial capital): 
 
,ܥ)ܷ  ,ேܭ (ௌܭ = ߬߬ − 1 න ఛିଵఛ( ௌஏܭ ேܭܥ)  ݁ିఘ௧ ݀ݐஶ

 , (17)

 
where ߬ is the coefficient of elasticity of intertemporal substitution, whereas Φ, Ψ 
are the parameters of the preferences of natural capital (nature) and social capi-
tal respectively. Solving the problem of dynamic optimization, the authors derive 
the constant growth rates of ܻ and ܭு in the steady-state. 
 

4. CRITICAL REMARKS AND ALTERNATIVE MODEL 
 

 These approaches, despite a number of simplifying assumptions, allow for 
a holistic consideration of natural capital in the processes of wealth creation. 
Natural capital occurs both as a renewable resource (being an argument in utility 
function) and as a flow (a resource used in production). Understanding the an-
thropogenic pressure in line with the material flow concept has the advantage 
that it does not reduce the problem only to the stream of pollutants emitted or 
used energy carriers. It seems that the indicators of material requirements are 
the best measures of the consumption of natural capital by individual countries, 
while the amount of materials consumed by the economy is currently being es-
timated by Eurostat. The significant disadvantage of the majority of models is the 
use of Cobb-Douglas production functions, i.e. allowing for substitution between 
individual capitals. In the light of the theory of ecological economy this is very 
unlikely. Creating a realistic model requires limited factor substitutions, but with-
out establishing strong complementarity. Using CES can be a reasonable com-
promise. 
 The most difficult issue is to consider the role of technology. There are many 
approaches in the literature that model the process of technology development 
emphasizing category of knowledge accumulation (Romer, 2012), innovation 
process (Howitt, Aghion, 1999) or human capital (Lucas, 1988). However, they 
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are substantially different. In the context of this work, it is legitimate to use the 
category of human capital. Taking into account the chosen assumptions of the 
models discussed in part 3 and the differences in human capital approach, we 
propose the following specifications for the growth model. Let ܭ, ,ܪ ܰ denote 
manufactured, human and natural capital, respectively. Human capital ܪ is in-
terpreted in the sense of Mankiw at al. (1992), i.e. it is generated by investing 
part of the economic output ܻ. We exclude social capital in this case in order to 
simplify the model. Aggregated product is produced using individual capitals, but 
aggregation is made using the CES function11 (cf. Kraev, 2002) with  ∈ (0, ∞): 
 
 ܻ = ,ܭ)݂ ,ܪ ܰ) = ିܭ ߙ) + ିܪ ߚ + )ିଵ. (18)ିܰ ߛ
 
 The production is divided between consumption, investment in produced capi-
tal and investment in human capital (education): 
 
 ܻ = ܥ + ܫ + (19) .ܧ
 
 The dynamics of produced and human capital is: 
 
ሶܭ  = ܻݏ − ܭߜ = ܻ − ܥ − ܧ − (20) ,ܭߜ
 
ሶܪ  = ுܻݏ = (21) ,ܧ
 
where ݏ and ݏு are respectively the investment rates in produced and human 
capitals12. It is possible to set them constant or use dynamic programming ap-
proach, when ܥ and ܧ are control variables. In what follows we consider the 
optimal control problem. The natural capital is a renewable resource, diminished 
by environmental pressure13: 
 
 ሶܰ = ܰݎ − ܲ. (22)
 
where the pressure and material intensity are defined as (Rodrigues at al., 
2005): 
                      

11 CES function assumes a limited substitution between factors, including human and produced 
capital. Note, however, that we do not prejudge the degree of substitution, which depends on the 
parameter p. Taking into account the different degree of substitution between the factors requires the 
use of a nested CES function. The use of the nested production function seems to be a more realis-
tic description of the economy, but we have abandoned this to simplify the model. 

12 Unlike Mankiw at al. (1992), we have abandoned the depreciation of human capital in order to 
simplify the model. 

13 Chapter 2 discusses the approach in which ܥܥ is variable, as does ܭே is allocated between 
economic use and ”free” part, according to ݑ. This leads to the dynamics in the form ሶܰ = ܥܥ)ܰݎ −ܰ) − ܲ. However, the assumption of fixed natural capital at stationary state implies constant ܥܥ and ݑ, therefore we simplify the model, choosing the form of eq. (22). 
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 ݉ = ݉ିܪܻିଵ, ܲ = ܻ݉ ≡  ݉ିܪܻ. (23)
 
 The social welfare is defined as the value of functional: 
 
 ܹ = න ݁ିఘ௧ ܷ(ܥ, ܰ)ஶ

 (24) ,ݐ݀

 
with the utility function ܷ(ܥ, ܰ) = ln ܥ + ln ܰ 14. Our goal is to maximize it and 
study the quantitative properties of solutions. 
 
 In our considerations we assume all the functions to be differentiable in 
their domains. It implies immediately that all the differential equations of the 
model have unique solutions. The control variables are consumption ܥ and 
investment in human capital ܧ, while the state variables are all types of capi-
tal: ܭ, ,ܪ ܰ. Notice that ܷ is concave and due to economic meaning of controls 
we may assume them to be uniformly bounded. Therefore the functional ܹ attains maximum for some values ܥ = ܧ and ∗ܥ =  The corresponding .∗ܧ
capital paths are denoted by ܭ∗,  and ܰ∗ respectively. The current value ∗ܪ
hamiltonian is: 
 
 ℋ(ܥ, ;ܧ ,ܭ  ,ܪ ܰ) = ,ܥ)ܷ ܰ) + ܻ)ߣ − ܥ − ܧ − (ܭߜ + ܧுߣ + ܰݎ)ேߣ − ܲ). (25)
 
4.1. Conclusions from the structure of the model 
 
 The standard way to start the analysis of the model is to assume that there 
exists a steady-state, when all the variables have constants rates of growth (we 
follow the standard notation for rate: ݃ for variable ܺ). However, as in (Ro-
drigues at al., 2005), we have to make additional assumption that our economy 
is in the biophysical equilibrium, i.e. ሶܰ = 0, because it is impossible for natural 
capital to grow without bounds. Then ܰݎ = ܲ and ܲ = ݉ିܪܻ are constant. 
We derive from here: 
 
 ݃ = ܽ݊ ݃ு. (26)
 
 Additionally we have ܻ݉ =  :what gives ,ݐݏ݊ܿ
 
 ݃ = −݃. (27)

                      
14 The utility function has been simplified to make the model and later calculations more legible. In 

general, you must enter the parameters differentiating the marginal utility of consumption and natural 
capital. For the needs of the model, we can assume that the units of measure of both goods are 
chosen to make unit utilities of both goods equal. 
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 We have to consider two possibilities. If ܰ is constant and ܭ ≫ ܪ ,ܰ ≫ ܰ, it is 
impossible for ܻ to grow with constant rate. The main obstacle is the production 
function with limited sustainability. To see this, recall Kraev (2002, p. 283). With 
constant ܰ, and ܭ and ܪ approaching infinity we have: 
 
 lim,ு→ஶ ܻ = lim,ு→ஶ(ିܭ ߙ + ିܪ ߚ + )ିଵିܰ ߛ = ଵ ܰ, (28)ିߛ

 
so ݃ approaches zero, as ܭ and ܪ grows with constant ܰ. Taking into account (26), we obtain that ݃ = ݃ு = 0. For the proposed production function: 
 
 ݃ = ߙ ൬ܻܭ൰ି ݃ + ߚ ൬ܻܪ൰ି ݃ு + ߛ ൬ܻܰ൰ି ݃ே, (29)

 
 Ultimately, we have zero growth rates for all variables in the long-run. In 
other words, with the assumption of limited substitutability and constant natural 
capital stock, unbounded steady state economic growth is not possible. Obvi-
ously, some kind of technological progress either in the form of an increase in 
the efficiency of natural capital use in the production function, or in the form of 
increasing total factor productivity is the only way to overcome this obstacle. 
The question about the nature of this progress, i.e. exogenous or endogenous, 
is still under consideration. It appears that this conclusion is in line with the 
concept of steady state economy by Daly (1980) with constant capital stock 
and a constant population size. We hope to take this into consideration in the 
further work. 
 If ܰ is abundant, i.e. ܰ ≫ ܰ and ܪ ≫  we can assume the possibility of ,ܭ
steady-state growth. In this case biophysical equilibrium boils down to: 
 
 ݃ = ߙ ൬ܻܭ൰ି ݃ + ߚ ൬ܻܪ൰ି ݃ு. (30)

 
Taking into account (26), we obtain: 
 
 ܽ݊ ݃ு = ߙ ൬ܻܭ൰ି ݃ + ߚ ൬ܻܪ൰ି ݃ு, (31)

 
and finally: 
 
 ቆܽ݊ − ߚ ൬ܻܪ൰ିቇ ݃ு = ߙ ൬ܻܭ൰ି ݃. (32)
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 The rates ݃ு and ݃ are constant by assumption, so differentiating the last 
identity with respect to time ݐ we get: 
 
 ൬ܪܭ൰ = (݃݃ߙ − ݃)݃ߚு(݃ − ݃ு). (33)

 
We conclude that the ratio ு is constant and: 
 
 ݃ = ݃ு = ݊ܽ ݃. (34)
 
Equation (21) implies that in the steady-state  ாு =  :so ,ݐݏ݊ܿ
 
 ݃ா = ݃ு. (35)
 
Therefore by (20) we get: 
 
 ݃ = ܻ − ܭܥ − ܭܧ − (36) ,ߜ

 
which leads to the observation that the ratio ି  is constant. This may happen if 
and only if: 
 
 ݃ = ݃ = ݃. (37)
 
 Combining (34) and (37) we get the necessary condition of the steady state: ܽ = ݊, i.e. ܲ elasticities of technology and output are equal. In particular, the 
conclusion about equal growth rates boils down (30) to: 
 
ߙ  ൬ܻܭ൰ + ߚ ൬ܻܪ൰ = 1. (38)

 
 However, it is worth noting that the condition ܽ = ݊ is very unlikely, so in the 
given model the steady state occurs with a probability close to zero. At the same 
time, if ܽ = ݊ then by (34) and (37) we have ݃ = ݃ = ݃ = 0. This leads to 
conclusions about the inability of long-term growth under steady state assuming 
constant natural capital. 
 
4.2. Optimization conditions 
 
 Despite the impossibility of unlimited economic growth in the long-run, we still 
can analyze the conditions maximizing social welfare. Pontriagin Maximum Prin-
ciple provides the following necessary conditions for optimal controls and paths: 
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ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

߲ℋ߲ܥ = 0       ߲ℋ߲ܧ = ߣߩ       0 − ሶߣ = ߲ℋ߲ߣߩܭு − ሶுߣ = ߲ℋ߲ߣߩܪே − ሶேߣ = ߲ℋ߲ܰ
      ⇔     

ەۖۖ
۔ۖۖ
ߣۓۖۖ = ߣ                                                                            ,ܥ1 = ߣߩ                                                                     ,ுߣ − ሶߣ = ߣ ൬߲ܻ߲ܭ − ൰ߜ − ேߣ ߲߲ܻܲ ுߣߩ            ,ܭ߲ܻ߲ − ሶுߣ = ߣ ܪ߲ܻ߲ − ேߣ ߲߲ܲܪ + ߲߲ܻܲ ேߣߩ          ,൨ܪ߲ܻ߲ − ሶேߣ = ߲ܷ߲ܰ + ߣ ߲ܻ߲ܰ + ݎேߣ − ேߣ ߲߲ܻܲ ߲ܻ߲ܰ ,

  
(39.1)

(39.2)

(39.3)

(39.4)

(39.5)

 
 Transversality conditions take the form: 
 lim௧→ାஶ݁ିఘ௧ߣ(ݐ)(ݐ)ܭ = 0,     lim௧→ାஶ݁ିఘ௧ߣு(ݐ)(ݐ)ܪ = 0,     lim௧→ାஶ݁ିఘ௧ߣே(ݐ)ܰ(ݐ) = 0. (40)
 
 Basing on (18) and (23) we derive the formulas for partial derivatives: 
 
ܪ߲ܻ߲  = ߚ ൬ܻܪ൰ାଵ , ܭ߲ܻ߲ = ߙ ൬ܻܭ൰ାଵ , ߲ܻ߲ܰ = ߛ ൬ܻܰ൰ାଵ, (41)

 
 ߲߲ܻܲ = ܻ݊ܲ , ܪ߲߲ܲ = − ܪܲܽ . (42)
 
 From (39.1) − (39.2) we immediately have ߣ∗ = ∗ுߣ = ଵ∗ and consequently: 
 
 ݃ఒ∗಼ = ݃ఒಹ∗ = −݃∗. (43)
 
 In the standard way (see Kamien, Schwartz, 2012, p. 138) we may calculate 
the shadow price of natural capital: 
 
(ݐ)∗ேߣ  = ߲߲ܹܰ (ݐ) = න ߲ܷ߲ܰ ݁ି(௦ି௧)݀ݏାஶ

௧ = (44) .∗ܰݎ1

 
 Therefore ݃ఒಿ∗ = −݃ே∗. Now we turn our attention to conditions (39.3) and (39.5). We divide the first equation by ߣ, the second one by ߣே. Using (43) and (44) we conclude: 
 
 ݃ே∗ = ݎ2 − ߩ + ∗ܻ∗ܲ݊ ߛ  ൬ܻ∗ܰ∗൰ାଵ ߩ + ߜ + ݃∗ߙ ቀܻ∗ܭ∗ቁାଵ − ߩ) + ߜ + ݃∗). (45)

 
 ܰ∗ = ∗ܥ ݎ1   ݊ܲ∗ܻ∗ ߙ  ቀܻ∗ܭ∗ቁାଵ

ߙ ቀܻ∗ܭ∗ቁାଵ − ߩ) + ߜ + ݃∗). (46)
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 Next, from equations (39.3) and (39.4), we derive the dependencies: 
 
 ݃∗ = ߙ ൬ܻ∗ܭ∗൰ାଵ ൬1 − ∗ߣ∗ேߣ ݊ܲ∗ܻ∗ ൰ − ߜ − (47) ,ߩ

 
 ݃∗ = ߚ ൬ܻ∗ܪ∗൰ାଵ ൬1 − ∗ߣ∗ேߣ ݊ܲ∗ܻ∗ ൰ + ∗ߣ∗ேߣ ∗ܪ∗ܲܽ − (48) .ߩ

 
 Eliminating the ratio ఒಿఒ಼ from those equations, we express the growth rate of 

consumption in terms of average productivities of manufactured and human 
capitals: 
 
 ݃∗ = 1 + ∗ܪ∗ߩܻ  ߙ ቀܻ∗ܭ∗ቁାଵ

ߚ ቀܻ∗ܪ∗ቁ − 1 − ߜ) + (49) .(ߩ

 
 The conclusions that we conduct from (45) and (49) are: 
 
a. డ∗డ(/) > 0, i.e. raising the average productivity of manufactured capital leads 

to greater consumption rate. Similar result for the growth rate of natural capi-
tal holds under the following condition on ݃∗: 

 
 ߲݃ே∗߲(ܻ/ܭ) > 0      ⇔        ݃∗ < ߚߙ ∗ܪ∗ܻ  + ∗ܪ∗ܻߩ ቀܻ∗ܪ∗ቁ − 1൨ ൬ܻ∗ܭ∗൰ାଵ − ߩ − (50) .ߜ

 
b. డ∗డ(/ு) < 0, i.e. (surprisingly) raising the average productivity of human capital 

leads to smaller consumption rate. Positive impact of this raise on the rate of 
growth for natural capital is possible, if the consumption rate satisfies: 

 
 ߲݃ே∗߲(ܻ/ܪ) > 0      ⇔        ݃∗ > 2ߙ  ൬ܻ∗ܭ∗൰ାଵ − ߩ − (51) .ߜ

 
c. డ∗డ(/ே) = 0, while 
 
 ߲݃ே∗߲(ܻ/ܰ) > 0    ⇔     ݃∗ < ൰ାଵ∗ܭ∗൬ܻ ߙ − ߩ − (52) .ߜ

 
d. Greater depreciation rate ߜ results in smaller consumption rate, while డಿ∗డఋ = 0. 
e. Increase in  (so equivalently: decrease in substitutability) causes decrease 

in ݃∗ provided: 
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ەۖۖ
۔ۖ
lnۓۖ ∗ܭ∗ܻ < ߚ ቀܻ∗ܪ∗ቁ

ߚ ቀܻ∗ܪ∗ቁ − 1 ln ∗ܪ∗ܻ ,                 ݂݅    ൬ܻ∗ܪ∗൰ > ߚ1 ,
ln ∗ܭ∗ܻ > ߚ ቀܻ∗ܪ∗ቁ

ߚ ቀܻ∗ܪ∗ቁ − 1 ln ∗ܪ∗ܻ ,                  ݂݅    ൬ܻ∗ܪ∗൰ < ߚ1 . (53)

 
 Increase in  has negative influence on ݃ே∗ if: 
 
 ln ܻ∗ܰ∗ < ln ∗ܪ∗ܻ ߚ  ቀܻ∗ܪ∗ቁାଵ

ߚ ቀܻ∗ܪ∗ቁାଵ − 2 ∗ܪ∗ܻ − (54) .ߩ

 
 Assuming constant rate of consumption on optimal path ݃∗ =  we may ,ݐݏ݊ܿ
have additional conclusion from (49) about influence of average productivity of 
human capital on the rates of production, manufactured and human capitals: 
 
 ݃∗ − ݃ு∗݃∗ − ݃∗ = ) + 1) ቈቀܻ∗ܪ∗ቁଶ + ߩ

 ቀܻ∗ܪ∗ቁଶ + ߚ ൨ߩ ቀܻ∗ܪ∗ቁାଵ
ߚ ቀܻ∗ܪ∗ቁ − 1 − ߩ ቀܻ∗ܪ∗ቁଶ. 

(55)

 
4.3. Coexistence of the steady-state and optimal growth path 
 
 In this section we are going to investigate the properties of steady state, being 
simultaneously the optimal growth path. Combining condition (38) (constant 
combination of productivities of manufactured and human capitals) with the for-
mula on optimal consumption growth rate (49): 
 
 ݃∗ = − 1 + ∗ܪ∗ߩܻ  − ߜ) + (ߩ < 0. (56)

 
 In view of equal growth rates given by (34), (35) and  (37), we immediately 
get, that the economy collapses. On the other side, by differentiation of (49) with 
respect to time, we conclude that ݃∗ = 0, and therefore ݃∗ = 0, what gives 
contradiction. Therefore in our model it is impossible to have steady-state, which 
simultaneously realizes welfare maximum. 
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5. CONCLUSIONS 
 
 The main conclusion we can derive from the discussed model in the impossi-
bility of the economic growth in the long run if the limited substitutability and 
constant natural capital are assumed. Technological progress either in the form 
of the increase of natural capital efficiency or in the form of increasing total factor 
productivity seems to be the only way to overcome this limit. If the stock of natu-
ral capital is abundant, we can assume steady state growth (again, we must 
note that steady-state is very unlikely due to necessity of ܽ = ݊), although it is 
still impossible to have steady-state growth, which simultaneously realizes wel-
fare maximum. 
 Other conclusions resulting from the model are: 
1. Raising the average productivity of manufactured capital leads to greater con-

sumption rate. Similar result for the growth rate of natural capital holds 
if growth rate of consumption is limited from above. 

2. Raising the average productivity of human capital leads surprisingly to smaller 
consumption rate. Positive impact of this raise on the rate of growth for natural 
capital is possible, if the consumption growth rate is limited from below. 
It could be interpreted as follows: faster consumption growth inhibits economic 
growth by reducing investment opportunities, thus slowing down the growth of 
natural capital usage ܲ, which is positively dependent on ܻ. As a result, 
a faster growth of natural capital is possible. 

3. Greater depreciation rate ߜ results in smaller consumption rate. 
4. Increase in  (so equivalently: decrease in substitutability) could lead to de-

crease in ݃∗. Increase in  could also have negative influence on ݃ே∗. In both 
cases decrease in substitutability means lower growth rates. 

 Obviously, more in-depth reflection on the results is needed as well as an 
attempt to modify the model to enable sustainable growth, i.e. constant positive 
growth rate of production and consumption with constant natural capital stock. 
The model presented in the paper is just one of the many possibilities for de-
scribing the behaviour of the economy, thus another specification of assump-
tions, in particular the assumption on substitutability of natural capital with other 
kinds of capital, would potentially allow the long-term growth with preserved 
natural capital. 
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KAPITAŁ NATURALNY W MODELACH EKONOMICZNYCH 

 
Streszczenie 

 
 Celem artykułu jest dokonanie krytycznej analizy wybranych modeli wzrostu 
proponowanych w ramach szkoły ekonomii ekologicznej oraz odwołujących się 
do kategorii kapitału naturalnego, jak również próba konstrukcji alternatywnego 
modelu. W szczególności traktujemy kapitał naturalny jako odnawialny zasób 
i używamy funkcji produkcji CES, tym samym ograniczając możliwości substytu-
cji kapitału naturalnego innymi formami kapitału. Analizowane są optymalne 
(tj. maksymalizujące dobrobyt społeczny) ścieżki kapitału i konsumpcji. Artykuł 
kończy się wnioskami formułowanymi na podstawie modelu. 
 Słowa kluczowe: ekonomia ekologiczna, trwałość, wzrost gospodarczy, kapi-
tał naturalny, funkcja produkcji CES 

 
NATURAL CAPITAL IN ECONOMIC MODELS 

 
Abstract 

 
 The goal of our paper is to make a critical analysis of selected growth models 
that use the notion of natural capital and to construct the alternative model. In 
particular we treat the natural capital as a renewable resource and we use CES 
production function, weakening the assumption of substitutability of natural capi-
tal with other forms of capital. We investigate the optimal paths for capital and 
consumption, giving their characterization in the dependence on the parameters 
of the model. The paper ends with conclusions derived from the model. 
 Keywords: ecological economics, sustainability, growth model, natural capi-
tal, CES production function 
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1. INTRODUCTION

The Prisoner’s Dilemma with its generalizations are very important as an 
example of conflicts and social dilemmas. As we can find in Dawes (1980), social 
dilemmas are real life problems which have two properties: ”1. each individual 
receives a higher payoff for a socially defection choice than for a socially 
cooperative choice, no matter what the other individuals in society do; 2. all 
individuals are better off if all cooperate than if all defect.” An example of such 
situation in real life is a problem of soldiers who fight in a battle. They are 
personally better off taking no chances, yet if no one fight against the enemy, 
then the result will be worst for all of soldiers. Such dilemmas can be found 
among resource depletion, pollution and overpopulation. 

Social dilemmas are games in which there is a conflict between individual 
rationality and optimality of the equilibrium payoff. Since it is observable that 
people cooperate with each other in the real situations, game theorists have 
faced the obstacle, how to construct simple tools to encourage players in such 
games to cooperate with each other. The model need to approximate the real 
situation and strategies should be likely to use. 

A natural approach is to consider the infinitely repeated game. Usually, all 
players observe the whole history of action profiles used in previous stages of 
the repeated game. Such situation is called the game with complete information. 
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The strategies are functions from the set of the histories into the set of actions. 
Payoffs in the repeated game are either the discounted sum of stage payoffs or 
the limit of average payoffs. The aim of this approach is to obtain the Nash 
equilibrium in the repeated game with the pair of payoffs which is close to the 
cooperation payoffs in the stage game. Since the fifties of the last century there 
appeared various folk theorems which was not explicitly published and, in many 
cases, the original author is unknown. 

The classic Prisoner’s Dilemma is a 2-player game, in which each player has 
two actions, usually denoted as ܥ (cooperation) and ܦ (defection). The game 
has a unique Nash equilibrium – a pair of actions such that the action of each of 
the players optimize this player’s payoff given the action of the opponent. The 
Nash equilibrium is the action profile (ܦ,  which is the pair of strictly dominant (ܦ
actions i.e. playing ܦ is better than ܥ whatever the other player does. What is 
more, both players benefit changing (ܦ, ,ܥ) into (ܦ  So, the mechanism of .(ܥ
individual rationality fails in the Prisoner’s Dilemma and it leads to a loss of both 
players. It means that the Nash equilibrium is not Pareto-optimal in this case. 

One of solutions for lack of cooperation of the Nash equilibrium in the stage 
game is an idea of good strategies introduced in Smale (1980) for the repeated 
Prisoner’s Dilemma. Every pair of good strategies is a Nash equilibrium in the 
repeated game with Pareto-optimal payoffs corresponding to the payoff of (ܥ,  (ܥ
in the stage game. The second advantage of the good strategies equilibrium is 
the warranted minimal payoff for the non-deviating player. The minimal payoff is 
equal to the Nash payoff in the stage game. Good strategies have yet another 
advantage that has not been pointed in Smale (1980). Choosing a good strategy 
appropriately, the player controls the second player’s payoff. For every ߝ > 0 
there exists the ߝ-good strategy of the first player such that for an arbitrary 
second player’s strategy, the first player’s payoff will be at most ߝ smaller than 
the second player’s payoff. The Prisoner’s Dilemma is symmetric, so the second 
player also can choose the ߝ-good strategy which provides him no worse payoffs 
than the first player’s one minus ߝ. 

In fact, good strategies have properties that was postulated in Axelrod (1984). 
In 80’s he studied the evolution of cooperation. It refers to how cooperation can 
emerge and persist as elucidated by application of game theory. He organized 
a tournament in which game theory experts submitted their strategies and each 
strategy was paired with each other for 200 iterations of Prisoner’s Dilemma. 
Accumulated payoffs through the tournament was treated as a score. The 
winner was the strategy submitted by Arnold Rappaport – Tit for Tat. The 
additional advantage of this tournament was detecting what properties strategies 
should satisfy to encourage players to cooperate. They should be: nice, 
forgiving, retaliatory and are founded on simple rules. Good strategies have 
these properties and, what is more, player cooperates until the other player’s 
average payoff is greater than his average payoff plus ߝ. By choosing ߝ, the 
player determines the level of his tolerance for the defection. 
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In this paper we shall consider the generalization of the idea of good 
strategies onto the Prisoner’s Dilemma type repeated game for three players. 
We consider the repeated game with a partial monitoring. We assume that, after 
each stage, all players can only observe an aggregated history – the arithmetic 
mean of the payoffs from previous stages. The stage game is a symmetric 
3-player game where each player has an action set consisting of two actions: ܫ and ܰ6ܫ. We assume that the action profile (ܰܫ, ,ܫܰ  is the only Nash (ܫܰ
equilibrium, and the sum of the players payoffs is minimal for this profile. The 
sum of players payoffs is maximal for the profile (ܫ, ,ܫ  The strategy profile in .(ܫ
the repeated game is a function ݏ: ܵ → ,ܫ} ܵ ଷ, where{ܫܰ ⊂ ܴଷ is a convex hull of 
the set of the payoffs in the stage game. 

An example of a game considered in the paper is given in Example 2 (section 3). 
The strategy profile (NI, NI, NI) is the only Nash equilibrium. The common payoff 
corresponding to the equilibrium profile (∑ = 60) is the lowest possible one. The 
strategy NI dominates the strategy I, i.e. the action NI gives higher payoff then 
the action I despite of the action of other players. So, the example has 
properties typical for real-life situations called tragedy of commons. The rational 
player should choose the action NI that dominates I but in real-life situations the 
cooperation is often observed (comp. Axelrod, 1984). So, it appears a question 
”How to explain theoretically a player inclination to cooperation that is observed 
practically?” It is known that one of the strongest factors that motivate 
cooperative behavior is the repetition of the game. In the paper we assume that 
the game is repeated infinitely times. Infinite time horizon well approximate real 
life situations of finite (≥ 20) but unknown time horizons. Our aim is to construct 
an equilibrium strategy profile in the repeated game that motivates every player 
to cooperation. We assume that after every repetition players know the average 
payoff of every player from previous stages. Briefly speaking, an equilibrium 
strategy of player i bases on the comparison of her average payoff x୧ with 
average payoffs x୨, x୩ of remaining players. Player i cooperates (chooses I) if x୨ < x୧ + ε and x୩ < x୧ + ε. If one of the remaining players’ average payoff is 
greater to x୧ + ε then she stops cooperation and chooses NI. Precise definition 
of an ε-good strategy is given in (19). The positive constant ε is a measure of 
player’s tolerance for others players defection. 

Our aim is to construct a strategy profile s∗ which is an approximated strong 
Nash equilibrium in the repeated game under consideration. The constructed 
equilibrium is safe in the meaning that the payoff of a player choosing strategy s୧∗ 
is not less then the equilibrium payoff in the stage game. This payoff is assured 
even if the other two players choose an arbitrary strategy. Furthermore, the ε-good strategy guarantees that, in long time horizon, other player’s average 
payoff will not exceed the good strategy player’s average payoff by more than ε. 
                      

6 From now on, we choose to name strategies with ܫ and ܰܫ, where ܫ means invest and it corre-
sponds to strategy ܥ and ܰܫ corresponds to strategy ܦ.  
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In the framework of the repeated game, a ε-good strategy is an individually 
rational strategy. It theoretically explains the players’ inclination to cooperation in 
the repeated three players Prisoner’s Dilemma. 

The notion of the strong equilibrium in the framework of repeated games was 
introduced by Aumann (1959, 1961, 1967), who showed that every payoff that 
belongs to the ߚ-core of the stage game is a strong equilibrium payoff in the 
corresponding repeated game (comp. Sorin, 1992, Thm. 6.2.2). Despite the fact 
that the payoff corresponding to the profile (ܫ, ,ܫ  core, our-ߚ belongs to the (ܫ
result is not exactly a case of the Aumann results. We have dropped the 
assumption of the full monitoring. Players do not observe the full history, i.e. the 
sequence of actions selected by all players in the previous periods. Instead, we 
assume that they observe the aggregate history, i.e. the arithmetic mean of the 
previous payoffs of all the players. It is worth noting that the results on the 
existence of strong equilibria (comp. Konishi, 1997 and Nessah, 2014) do not 
apply to the repeated game considered in the present paper. 

The repeated Prisoner’s Dilemma for more than two players has been 
considered in Behrstock (2015). The ߝ-good strategies constructed in the paper 
have some additional properties to the strategies in Behrstock (2015), in which the 
authors base on similar approchability results as we do in this paper. The difference 
is that authors consider ܰ-players Prisoner’s Dilemma Game in which strategies 
are stochastic processes. In our approach all strategies are deterministic. 

The paper is organized as follows. In section 2 we present the basic information 
about sequences related to a map of a convex set. We adopt Blackwell’s 
approachability method (comp. Blackwell, 1956) which was originally used in the 
framework of 2-player repeated games with vector payoffs. We show that the 
Blackwell condition is sufficient to obtain the convergence of the sequence of 
arithmetic means to a set called a weak attractor. The weak attractors introduced 
in subsection 2.1 have different properties in comparison with approachable sets 
in the sense of Blackwell. We provide an example of a singleton being a weak 
attractor that does not satisfy the Blackwell condition. Such a situation is not 
possible for approachable sets (comp. Shani, 2014, Thm. 8). In repeated games, 
there is considered a sequence of vector payoffs. Each payoff corresponds to one 
repetition of the state game. Subsection 2.1 provides us necessary results to 
analyze the directions in which the trajectory shifts and to examine the 
convergence of such sequence. This is crucial for defining the payoff in the 
repeated game. Subsection 2.2 provides basic properties of the Banach limit 
which shall be used to prove that ߝ-good strategies are ߝ Nash equilibria. In some 
of our arguments we not only require that the sequence of mean payoffs 
converges to a set, but that almost all its entries belong to the set. A similar 
problem named strong approachability was considered in Shani (2014). In section 
2.3 we adopt a Lyapunov function method for discrete and discontinuous 
dynamical systems to obtain a deterministic strong approachability result. 
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In section 3 we consider a repeated 3-player symmetric game. Every player 
has two actions: invest (I) or not invest (NI). The vector payoff B = (pଷ, pଷ, pଷ) 
corresponding to the strategy profile (I, I, I) is Pareto optimal and the strategy 
profile (NI, NI, NI) is a Nash equilibrium in the stage game with the payoff vector (r, r, r)). We assume that, in the repeated game, every player knows the 
average vector payoff from the previous stages of the game. The strategy s୧: S →{I, NI}, i ∈ {1,2,3}, is a function from the convex hull S of vector payoffs in the 
stage game to the set of his actions {I, NI}. The strategy profile s = (sଵ, sଶ, sଷ) 
and the vector payoff function G: {I, NI}ଷ → Rଷ determine the function φ = G ∘s: S → S. The strategy profile s and the initial point xଵ ∈ S determine the trajectory xത୬(s, xଵ) of a dynamic system given by  

 
 xത୬ାଵ = ୬୶തା(୶ത)୬ାଵ . 
 

 Our aim is to construct a strategy profile sக∗ = (sଵ∗, sଶ∗, sଷ∗) such that for every xଵ ∈ S 
 
 lim୬→ஶxത୬ = B, (1)
 

where xത୬ = xത୬(sக∗, xଵ). If one player (for example player 3) deviates then  
 
 limsup ୬→ஶ xത୬ଷ ≤ pଷ + ε, (2)
 

where xത୬ = xത୬((sଵ∗, sଶ∗, sଷ), xଵ) and sଷ: S → {I, NI} is an arbitrary strategy of player 
3. If two players deviate (for example players 2 and 3) then  

 
 limsup୬→ஶ (xത୬ଶ + xത୬ଷ) ≤ 2pଷ, (3)
 
 liminf ୬→ஶ xത୬ଵ ≥ r, (4)
 
 lim୬→ஶdist (xത୬, {x ∈ S; xଶ ≤ xଵ + ε, xଷ ≤ xଵ + ε}) = 0,  (5)
 

where xത୬ = xത୬((sଵ∗, sଶ, sଷ), xଵ) and sଶ, sଷ: S → {I, NI} are the arbitrary strategies of 
players 2 and 3, respectively. By dist(x, A) we denote the distance from the point x to the set A, i.e. dist(x, A) = inf{|x − a|: a ∈ A}. 

If the payoff is a Banach limit (comp. Conway, 1985) of the sequence of 
average payoffs then the strategy profile sக∗ is a strong ε-Nash equilibrium in the 
repeated game as a consequence of (1–3). Property (4) implies that the non-
deviating player’s payoff is no smaller than the payoff corresponding to the Nash 
equilibrium in the stage game. Property (5) guarantees that the deviating player’s 
payoff will not exceed the good strategy player’s payoff by more than ε. The 
results presented in Theorems 3.1, 3.2, 3.3 give a partial answer to the question 
asked by Smale in the last Remark in section 1 of Smale (1980, p. 1623). 
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Section 4 contains concluding remarks. In Appendix we present the proofs of 
theorems from subsection 2.3. 

 
2. PRELIMINARIES 

 
2.1. Approachability results 

 
Let H be a finite dimensional vector space and 〈⋅,⋅〉, | ⋅ | denote an inner 

product and a norm in H, respectively. We assume that S is a nonempty convex 
closed subset of H. By Nக(B) we denote an ε-neighbourhood of the set B in S, 
i.e. Nக(B) = {x ∈ S: dist(x, B) < ε}. The closure (the convex hull) of the set A we 
denote by cl(A) (co(A)) . 

We study limit properties of sequences (xത୬)୬ୀଵஶ  defined by a map φ: S → S and 
an initial point xଵ ∈ S by  

 
 xത୬ାଵ = nxത୬ + φ(xത୬)n + 1 ,    xതଵ = xଵ, (6)

 
 The sequence (xത୬) can be interpreted as a sequence of arithmetic means xത୬ = ଵ୬ (xଵ + ⋯ + x୬), where x୩ାଵ = φ(xത୩). The map φ defines a dynamical 
system β୬: S → S by  

 
 β୬(x) = nx + φ(x)n + 1 , n = 1, 2, … . 
 

 We denote by xത୬(φ, xଵ) a trajectory determined by (6). 
We say that a closed set A ⊂ S is a weak attractor for a dynamic system 

determined by the map φ if for every xଵ ∈ S we have  
 
 lim୬→ஶdist(xത୬(φ, xଵ), A) = 0, 
 

where dist(⋅, A) denotes the distance to the set A. We provide some sufficient 
conditions for being a weak attractor. 

 
First we formulate Blackwell approachability type theorem that originally was 

presented in Blackwell (1956) in the framework of repeated games with vector 
payoffs. We say that a map φ: S → S  satisfies the Blackwell condition for a set A ⊂ S in the domain D ⊂ S if  

 
 ∀x ∈ D, ∃y ∈ Π(x),    〈x − y, φ(x) − y〉 ≤ 0, (7)
 

where Π(x) denote the set of points in A that are proximal to x, i.e. Π(x) = {a ∈A: |a − x| = dist(x, A)}. 
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The deterministic version of the Blackwell approachability result can be formu- 
lated in the following way. 

Proposition 2.1 Suppose that the map φ: S → S satisfies the Blackwell 
condition for a closed set A ⊂ S in the domain D ⊂ S. If almost all elements of the 
bounded sequence xത୬(φ, xଵ) belong do the set D then  

 
 lim୬→ஶdist(xത୬, A) = 0. 

 
We provide the proof of Proposition 2.1 for the reader convenience. 
Proof: For a sufficiently large n we choose y ∈ Π(xത୬) and then  
 dist(xത୬ାଵ, A)ଶ ≤ |xത୬ାଵ − y|ଶ = ฬ nn + 1 (xത୬ − y) + 1n + 1 (φ(x୬) − y)ฬଶ = 

 = ቀ nn + 1ቁଶ |xത୬ − y|ଶ + ൬ 1n + 1൰ଶ |φ(x୬) − y|ଶ + 2 n(n + 1)ଶ 〈xത୬ − y, φ(x୬) − y〉 ≤ 

 ≤ ቀ ୬୬ାଵቁଶ dist(xത୬, A)ଶ + ቀ ଵ୬ାଵቁଶ C, 
 

 
where C is an upper bound of dist(x୬, A). Setting d୬ = nଶdist(xത୬, A)ଶ we have d୬ାଵ ≤ d୬ + C for n ≥ n. Thus d୬ ≤ d୬బ + (n − n)C. So  

 
 dist(xത୬, A)ଶ ≤ ଵ୬ ቀd୬బ + ୬ି୬బ୬ Cቁ. QED

 
Corollary 2.2 If the map φ: S → S satisfies the Blackwell condition for a closed 

set A ⊂ S in the domain S, then the set A is a weak attractor for φ. If the set A ⊂ S 
is convex and the map φ: S → A maps into the set A then the set A is a weak 
attractor for φ.  

Taking A = (−∞, c] in Proposition 2.1 we obtain the following property of real 
sequences.  

Corollary 2.3 Suppose that (a୬)୬ୀଵஶ  is a bounded sequence in ℝ and (aത୬)୬ୀଵஶ  
is the sequence of arithmetic means, i.e. aത୬ = ଵ୬ ∑୬୩ୀଵ a୩. If we have 

 
 (aത୬ > ܿ    ⇒     a୬ାଵ ≤ c) 
 

for almost all n and a fixed constant c ∈ ℝ, then  
 
 limsup ୬→ஶ aത୬ ≤ c. 
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In many cases the set A is a weak attractor despite that the Blackwell condition 
is not satisfied. Such a situation occurs in repeated games that we study in section 
3. Below we present two properties of weak attractors which are necessary for our 
reasoning. 

Proposition 2.4 Suppose that the sets A, B ⊂ ℝୢ are nonempty closed and B 
is bounded. If a sequence x୬ satisfies  

 
 lim୬→ஶdist(x୬, A) = lim୬→ஶdist(x୬, B) = 0, 

 
then 

 
 lim୬→ஶdist(x୬, A ∩ B) = 0. 

 
Proof: We choose a୬ ∈ A, b୬ ∈ B such that  
 
 |x୬ − a୬| = dist(x୬, A),    |x୬ − b୬| = dist(x୬, B) 
 

 Since the set B is compact, we obtain that the sequences (a୬), (b୬), (x୬) are 
bounded and they have the same nonempty set C of accumulating points. Thus lim୬→ஶdist(x୬, C) = 0 and C ⊂ A ∩ B.  

QED  
Proposition 2.5 We suppose that a closed set A ⊂ S is a weak attractor for 

the map φ: S → S and a closed subset B ⊂ A satisfies  
 
ߝ∀  > 0, ߜ∃ > 0, ߮ satisfies the Blackwell conditionfor the set ݈ܿ൫ܰఌ(ܤ)൯ ∩ (8) .(ܣ)in the domain ܰఋ ܣ  

 
 Then the set ܤ is a weak attractor for ߮.  

Proof: Fix xଵ ∈ S and ε > 0. By (8), we choose δ > 0 such that almost all 
elements of the trajectory xത୬(φ, xଵ) belongs to Nஔ(A). By Proposition 2.1, we 
obtain  

 
 lim୬→ஶdist(xത୬, cl(Nக(B)) ∩ A) = 0. 

 
 Thus 

 
 limsup ୬→ஶ dist(xത୬, B) ≤ ε. QED
 
The method illustrated in Proposition 2.4 and Proposition 2.5 bases on the 

scheme that we explain in the following example. 
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Example 1 Let S = ℝଶ, a, b ∈ ℝଶ, aଶ < 0, bଶ > 0, aଵ ≠ bଵ and 
 
 φ(x, y) = ൜a if y > 0,b if y ≤ 0. 
 

 We show that lim୬→ஶxത୬ = d for every xതଵ ∈ ℝଶ, where the limit d is the point of 
intersection of the interval ab with the line p = {(x, y): y = 0}. The set D = {d} does 
not satisfy condition (7). Indeed, if aଵ < bଵ and x > dଵ then φ(x, 0) = b and 〈(x, 0) − (dଵ, dଶ), φ(x, 0) − (dଵ, dଶ)〉 > 0. To show that the set D is a weak attractor 
we point out weak attractors A, B such that D = A ∩ B. We set A = p and B = ab. 
The sets A, B satisfy the Blackwell condition (7). By Theorem 2.1, we have  

 
 lim୬→ஶdist(xത୬, A) = lim୬→ஶdist(xത୬, B) = 0. 
 

 Applying Proposition 2.4 we obtain that lim୬→ஶxത୬ = d. 
Finally, we shall formulate a property of the dynamical system. 
Proposition 2.6 If the set S is bounded then for every ξ > 0 there exists N ∈ ℕ 

such that for all n > N and for all x ∈ S 
 
 |β୬(x) − x| <  ,ߦ
 

where the map φ: S → S determining β୬ is arbitrary. 
 

2.2. Payoff in the repeated game 
 
Considering a sequence of payoffs in the repeated games we always receive 

a bounded sequence. As we presented in (6), the dynamic is the vector of the 
arithmetic mean of the payoffs received in the previous repetitions. To analyze 
such sequence, the following proposition shall be useful. 

Proposition 2.7 Suppose that a, aଵ, … , a୩ ∈ ℝୢ and let T ∈ ℕ. Then for all  ε > 0 and for all nଵ, … , n୩ ≥ 0 such that nଵ + ⋯ + n୩ = n, where n is sufficiently 
large, we have  

 
 TT + n a + nଵT + n aଵ + ⋯ + n୩T + n a୩ ∈ Nக(co{aଵ, … , a୩}). 
 
Proposition 2.7 is a consequence of the fact that ା୬ aଵ + ୬భା୬ aଵ + ⋯ + ୬ౡା୬ a୩ ∈co{aଵ, … , a୩} and ା୬ |a − aଵ| is small where n is sufficiently large. 
To define the payoff in repeated games we shall use the Banach limit (comp. 

Conway, 1985). The Banach limit L is a continuous linear functional definite on 
the space lஶ of bounded scalar sequences. If (x୬) is a bounded sequence of 
points in Rୢ then Lim (x୬): = ( Lim (x୬ଵ), Lim (x୬మ), … , Lim (x୬ୢ)), where x୬ =(x୬ଵ, x୬ଶ, … , x୬ୢ). So Banach Limit can be extended onto the space of bounded 
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sequences of points in Rୢ. If φ: Rୢ → R is a linear functional then φ( Lim (x୬)) = Lim (φ(x୬)). 

Proposition 2.8 If A is a compact convex subset of Rୢ and a sequence (x୬) ⊂Rୢ satisfies lim୬→ஶdist(x୬, A) = 0, then Lim (x୬) ∈ A.  
Proof. Suppose to the contrary that Lim (x୬) ∉ A. Then there exists a functional φ: Rୢ → R such that φ( Lim (x୬)) > supୟ∈φ(a). We have limsup୬→ஶφ(x୬) ≤supୟ∈φ(a). Thus  
 φ( Lim (x୬)) =  Lim (φ(x୬)) ≤ limsup୬→ஶ φ(x୬) ≤ supୟ∈ φ(a) 

which gives the contradiction. QED
 

2.3. A lapunov type results 
 
The Lapunov function method is typically used to study stability of equilibrium 

points for dynamical systems. Using the Lapunov function method we obtain 
a strong approachability result for a dynamical system determined by a multivalued 
map. 

Let H be a Hilbert space and pଵ, . . . , p୩ ∈ H be unit vectors, i.e. |p୧| = 1. We 
define a function V: H → ℝ by  

 
 V(x) = max୧∈{ଵ,…,୩}V୧(x)         where V୧(x) = 〈p୧, x〉. (9)
 

 The function V is a support function of the set {vଵ, … , v୩}. So, the function V is 
convex, positively homogeneous and lipschitz continuous with the constant L =1 (see [11]). 

 
Set 
 
 Δୡ = ሩ୩

୧ୀଵ {x ∈ H: V୧(x) < ܿ} = ݔ} ∈ :ܪ (ݔ)ܸ < ܿ}. 
 

 Let us denote by φ: S → S a multivalued map of a subset S ⊂ H. 
Definition 2.9 We say that V is the Lapunov type function for the multivalued 

map φ with the constant c > 0 if  
 
 ∃0 < δ < c, ∀x ∈ S\Δୡ, ∀i = 1, . . . , k, ∀ω ∈ φ(x), (V୧(x) ≥ V(x) − δ  ⇒  V୧(ω) ≤ 0). (10)

 
 If the function V satisfies  

 
 ∀x ∈ S\Δୡ, ∀ω ∈ φ(x), ∀i ∈ {1, … , k}    V୧(x) > 0  ⇒   V୧(ω) ≤ 0, (11)
 

then V is the Lapunov type function for φ with the constant c. 
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If V is the Lapunov type function for φ with the constant c and cଵ > c then V is 
the Lapunov type function for φ with the constant cଵ. 

To explain why we say that V is the Lapunov type function observe that if V୧(x) = V(x) then p୧ ∈ ∂V(x), where ∂V(x) is the subdifferential of a convex 
function. The condition (10) implies the following inequality  

 
 〈p୧, ω − x〉 ≤ 〈p୧, ω〉 − 〈p୧, x〉 ≤ 0 − V(x) + δ < δ − c < 0     for x ∈ S\Δୡ, 
 

which means that V is the Lapunov function for the vector field f(x) = ω − x. 
Proposition 2.10 Let S be a nonempty bounded convex subset of H and the 

function V: H → ℝ given by (9) be the Lapunov type function for the multivalued 
map φ: S → S with the constant c > 0. If a sequence (xത୬)୬ୀଵஶ  satisfies  

 
 xതଵ = xଵ ∈ S,    xത୬ାଵ = ୬୶തା୶శభ୬ାଵ ,    x୬ାଵ ∈ φ(xത୬), (12)
 

then  
 
 ∀cଵ > c, ∃N, ∀n ≥ N,    xത୬ ∈ Δୡభ. 
 
The proof of Proposition 2.10 is technical and it is presented in Appendix. 
 

3. THE MODEL AND MAIN RESULTS 
 
Let G be a 3-player symmetric game and every player has two pure actions: 

”invest” (I) or ”not invest” (NI). By P୍  (P୍) we denote the payoff for an investing 
(not investing) player. All payoffs depend on the total number of investing 
players. If n ∈ {0, 1, 2, 3} is the total number of investing players, then  

 
 n P୍ (n) P୍(n)0 − r1 pଵ rଵ2 pଶ rଶ3 pଷ −  

 
 The game G in the normal form is given by the matrix:  

 
 I (pଶ, rଶ, pଶ) (pଷ, pଷ, pଷ)NI (rଵ, rଵ, pଵ) (rଶ, pଶ, pଶ)NI I  

 
when the third player invests, and by the matrix 

 
 I (pଵ, rଵ, rଵ) (pଶ, pଶ, rଶ)NI (r, r, r) (rଵ, pଵ, rଵ)NI I  

 
when the third player does not invest. 
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We shall assume that the functions P୍ (⋅), P୍(⋅) are increasing:  
 
 0 < r < rଵ < rଶ   and           0 < pଵ < pଶ < pଷ. (13)
 

 We assume that  
 
 pଵ < r. (14)
 

 By (14), the outcome (NI, NI, NI) is a Nash equilibrium. We assume that the 
more players invest, the greater the sum of all players payoffs is, i.e.  

 
 3r < pଵ + 2rଵ < 2pଶ + rଶ < 3pଷ. (15)
 

 By (15), the vector payoff (pଷ, pଷ, pଷ) is Pareto optimal. In fact, the condition (15) means even more – the vector payoff (pଷ, pଷ, pଷ) maximize the sum of 
payoffs. To obtain a strong equilibrium in the repeated game we assume that:  

 
 pଵ + rଵ < 2pଷ. (16)
 

 We additionally assume that:  
 
 pଶ < rଶ. (17)
 

 Observe that from the opposite inequality rଶ ≤ pଶ implies that (pଷ, pଷ, pଷ) is 
a Nash equilibrium payoff, what we wanted to avoid. 

We introduce the following notations  
 
 A = (r, r, r),B = (pଷ, pଷ, pଷ),Cଵଵ: = (pଵ, rଵ, rଵ),Cଶଵ: = (rଵ, pଵ, rଵ),Cଷଵ: = (rଵ, rଵ, pଵ),Cଵଶ: = (rଶ, pଶ, pଶ),Cଶଶ: = (pଶ, rଶ, pଶ),Cଷଶ: = (pଶ, pଶ, rଶ).

 

 
If i players invest (i ∈ {1, 2}) then C୨୧ denotes the vector payoff in the game G. 
If i = 1 then j shows which one invests, while if i = 2 then j tells which player 
does not invest. 

The strategy profile in the iterated game is given by a map s: S → {I, NI}ଷ, 
where S is the convex hull of vector payoffs set, i.e.  

 
 S = co{A, B, Cଵଵ, Cଶଵ, Cଷଵ, Cଵଶ, Cଶଶ, Cଷଶ}. 
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The strategy profile s determines a dynamical process β୬: S → S 
 
 β୬(x) = ୬୶ା(୶)୬ାଵ ,           for x ∈ S,    n ∈ ℕ, (18)
 

where φ: S → S is given by the formula φ = G ∘ s. Observe that a pair (s, xଵ), 
where s is a strategy profile and xଵ ∈ S, uniquely determines a sequence (xത୬)୬ୀଵஶ  
by:  

 
 xതଵ = xଵ,      xത୬ାଵ = β୬(xത୬). 
 
We denote the obtained sequence by xത୬(s, xଵ). A similar construction of a 

sequence was considered in section 2. The strategy profile s and the initial point xଵ ∈ S uniquely determine a play path. The action profile in the next stage s(xത୬) 
depends on the average vector payoff xത୬. The element x୬ାଵ is the vector payoff 
in n + 1 stage. We do not assume that the players observe the full history of the 
game. Instead, they observe aggregated history – the arithmetic mean of vector 
payoffs. 

Motivated by the Smale construction in Smale (1980) we define an ε-good 
strategy for the i-th player s୧க: S → {I, NI} by  

 
 s୧க(x) = ൜I if x ∈ V୧,NI if x ∈ S\V୧, (19)

 
where  

 
 V୧ = Ω୧க\W୧,Ω୧க = {x ∈ S:    x୧ > x୨ − ε and x୧ > x୩ − ε},W୧ = {x ∈ S:    x୧ < r or x୨ + x୩ > 2pଷ},  

 
where i, j, k are pairwise different elements of the set of players {1, 2, 3}. The 
player invests if his average payoff is greater than the every other players’ 
average payoff minus ε. The player stops investing if his playing I has been 
exploited by his opponents, that is either the average payoff of the player is 
lower than the payoff guaranteed by Nash equilibrium (x୧ < r) or the sum of the 
other players’ average payoffs is greater then the sum of their payoffs 
corresponding to the Pareto optimal profile (I, I, I) (x୨ + x୩ > 2pଷ). 

 
First we consider the case when all players choose good strategies. Then the 

average payoffs vector tends to the point B corresponding to the Pareto optimal 
profile (I, I, I).  

Theorem 3.1 Suppose that s୧க: S → {I, NI} are the ε-good strategies for i =1,2,3. Then  
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 lim→ஶxത = B, 
 

where xത = xത((sଵக, sଶக, sଷக), xଵ) and xଵ is an arbitrary element of S.  
 
Now, we consider the case when two players play good strategies and the 

third one deviates and chooses an arbitrary strategy. The deviating player does 
not improve their payoff more then ଶଷ ε, where the positive constant ε can be 
chosen arbitrarily small by the two non-deviating players.  

Theorem 3.2 Suppose that the first and the second player choose the ε-good 
strategies sଵக, sଶக and the third player plays an arbitrary strategy sଷ: S → {I, NI}. 
Then  

 
 limsup→ஶ  xഥଷ ≤ pଷ + ε ଶଷ,(20) (20)
 

where xത = xത((sଵக, sଶக, sଷ), xଵ) and xଵ is an arbitrary element of S.  
 
At the end of the section we show an example of the third player strategy, 

such that the upper limit of his average payoffs is strictly grater than pଷ. 
Now, we consider the case when two players deviate.  
Theorem 3.3 Suppose sଵக is the ε-good strategy for the first player and sଶ, sଷ 

are arbitrary strategies. Then  
 
 liminf →ஶ xതଵ ≥ r, (21)
 
 limsup→ஶ (xതଶ + xതଷ) ≤ 2pଷ, (22)
 
 lim→ஶdist (xത, Vଵ) = 0, (23)
 

where xത = xത((sଵக, sଶ, sଷ), xଵ) and xଵ is an arbitrary element of S.  
 
Suppose that the payoff in the repeated game is defined as the Banach limit 

of average payoffs. The inequality (22) provides that if two players deviate then 
at least one of them will not improve his payoff. Conclusions (21) and (23) mean 
that the good strategy is safe, i.e. the non-deviating player’s payoff is not smaller 
than the Nash equilibrium payoff in the stage game and, moreover, the deviating 
player’s payoff is not greater than the non-deviating player’s payoff plus ߝ (comp. 
Proposition 2.8). 

By Theorems 3.1 – 3.3, we obtain  
Corollary 3.4 The strategy profile sக = (sଵக, sଶக, sଷக) satisfies (1-5). If we define 

the payoff in the repeated game as a Banach limit of average payoffs, i.e Limxത 
then the strategy profile sக is a safe and strong ε Nash equilibrium. 
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Below we provide some elementary properties of sets V୧ that are used in the 
definition of good strategies. We assume that i, j, k are pairwise different 
elements of the set of players {1, 2, 3}. We shall use the following notations  

 
 Vଷ = ⋂ଷ୧ୀଵ V୧V୧ଶ = (S\V୧) ∩ V୨ ∩ V୩V୧ଵ = V୧ ∩ (S\V୨) ∩ (S\V୩). 

 
 If each player plays good strategy then  

 
 φ(x) = ቐB if x ∈ VଷC୧ଵ if x ∈ V୧ଵ for i ∈ {1,2,3}C୧ଶ if x ∈ V୧ଶ for i ∈ {1,2,3}. (24)

 
Proposition 3.5 Suppose that player i plays ε୧-good strategy for i = 1, 2, 3. 

Then  
 
 Ω୧ ∩ W୧ = ∅, (25)
 
 V୧ଵ ⊂ Ω୧, (26)
 

where  
 
 Ω୧ = {x ∈ S: x୧ = max{xଵ, xଶ, xଷ}}. 
 

 If we assume that ε୧ = ε୨ (=: ε) then  
 
 V୧ ∩ (S\V୨) ⊂ Ω୧ ∪ Φ୨. (27)
 

 If we assume that ε୧ = ε୨ = ε୩ (=: ε) then for every i ∈ {1, 2, 3} we have  
 
 V୧ଶ ⊂ Φ୧, (28)
 

where  
 
 Φ୧ = {x ∈ S: x୧ = min{xଵ, xଶ, xଷ}}. 
 
Proof: If x୧ < r and x୧ = max{xଵ, xଶ, xଷ} then xଵ + xଶ + xଷ < 3r. If x୨ + x୩ >2pଷ and x୧ = max{xଵ, xଶ, xଷ} then xଵ + xଶ + xଷ > 3pଷ. Since 3r ≤ xଵ + xଶ + xଷ ≤3pଷ for x ∈ S, we obtain (25). 
As (S\V୨) ∩ Ω୨ = ∅ and (S\V୩) ∩ Ω୩ = ∅ we have (S\V୨) ∩ (S\V୩) ⊂ S\(Ω୨ ∪Ω୩) ⊂ Ω୧, and consequently we obtain (26). 
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To prove conclusion (27) we take i = 1, j = 2. As (Wଶ\Wଵ) ∩ Φଵ = ∅ and (Ωଷ\Φଵ) ⊂ Φଶ we obtain Wଶ\Wଵ ⊂ (Ωଵ ∪ Ωଷ)\Φଵ ⊂ Ωଵ ∪ Φଶ. If x ∈ Ωଵக\Ωଶக  then 
either  

 
 xଶ ≤ xଵ − ε 
 

or  
 
 xଶ ≤ xଷ − ε and xଵ > xଷ − ε  (x ∈ Ωଵக). 
 
In both cases we obtain xଶ < xଵ and thus x ∈ Ωଵ ∪ Φଶ. Since Vଵ ∩ (S\Vଶ) ⊂(Ωଵக\Ωଶக ) ∪ (Wଶ\Wଵ), we conclude that  
 
 Vଵ ∩ (S\Vଶ) ⊂ Ωଵ ∪ Φଶ. 
 

 If x୧ ≤ x୨ − ε (x ∉ Ω୧க) and x୩ > x୨ − ε (x ∈ Ω୩க ) then x ∈ Φ୧. If x୧ ≤ x୩ − ε (x ∉Ω୧க) and x୨ > x୩ − ε (x ∈ Ω୨க) then x ∈ Φ୧. Thus (S\Ω୧க) ∩ Ω୨க ∩ Ω୩க ⊂ Φ୧. 
 
If x ∈ V୨ then x ∉ W୨ and hence x୨ ≥ r and x୧ + x୩ ≤ 2pଷ. If x ∈ W୧ ∩ V୨ ∩V୩ then either x୧ < r, x୨ ≥ r, x୩ ≥ r or x୨ + x୩ > 2pଷ, x୧ + x୩ ≤ 2pଷ, x୧ +x୨ ≤ 2pଷ. In both cases we deduce that x ∈ Φ୧. So V୧ଶ ⊂ Φ୧. QED
First we prove Theorem 3.3. 
Proof: The strategy sଵ∗ is the ε-good strategy, so if xതଵ < r then xത =(xതଵ, xതଶ, xതଷ) ∈ Wଵ and sଵ∗(xത) = NI. It means that the next vector payoff xାଵ 

belongs to the set {A, Cଶଵ, Cଷଵ, Cଵଶ}, so xାଵଵ ∈ {r, rଵ, rଶ}, i.e. xାଵଵ ≥ r (see (13)). By 
Corollary 2.3 we obtain that limsup→ஶ − xതଵ ≤ −r, so liminf→ஶxതଵ ≥ r. 

Similarly, if xതଶ + xതଷ > 2pଷ then sଵ∗(xത) = NI. Thus the sum xାଵଶ + xାଵଷ  is one 
of the numbers: 2r, pଵ + rଵ, 2pଶ. From the assumptions (13), (15) and (16), it 
follows that xାଵଶ + xାଵଷ ≤ 2pଷ. By Corollary 2.3, we get  

 
 limsup →ஶ xതଶ + xതଷ ≤ 2pଷ. 
 
If x ∈ S\Vଵ then sଵ∗(xത) = NI. So, φ(x) = G((sଵ∗, sଶ, sଷ)(x)) ∈{A, Cଶଵ, Cଷଵ, Cଵଶ} ⊂ Vଵ. By Corollary 2.2, the set Vଵ is a weak attractor for φ. QED
Let π୳: ℝଷ → u be the orthogonal projection onto the line u = {x ∈ ℝଷ: xଵ =xଶ = xଷ} and π: ℝଷ → P be the orthogonal projection onto the plane P = {x ∈ℝଷ: xଵ + xଶ + xଷ = 0}. Obviously π୳(x) = ቀ୶భା୶మା୶యଷ , ୶భା୶మା୶యଷ , ୶భା୶మା୶యଷ ቁ and π(x) =x − π୳(x). In the remainder of the section we denote the projection of a point (a 

set) A onto the plane P by A෩, i.e. A෩ = π(A). The projection of the set S onto the 
plane P:  

 
 S෨: = π(S) 
 

is the convex hull of the hexagon with successive vertexes C෨ଵଵ, C෨ଶଶ, C෨ଷଵ, C෨ଵଶ, C෨ଶଵ, C෨ଷଶ. 
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Set  
 
 vଵ = 1√2 (0, −1,1), vସ = −vଵ,vଶ = 1√2 (−1,0,1), vହ = −vଶ,vଷ = 1√2 (−1,1,0), v = −vଷ, 
 

and  
 
 Δୡ(K) = ⋂୧∈ {y ∈ S෨: 〈v୧, y〉 < c}, 
 

where K ⊂ {1, … ,6} and c > 0. One can easy check that  
 
 x ∈ Ωଵக ⇔ π(x) ∈ Δୡ({2,3}),x ∈ Ωଶக ⇔ π(x) ∈ Δୡ({1,6}),x ∈ Ωଷக ⇔ π(x) ∈ Δୡ({4,5}), 
 

where c = க√ଶ. Setting Ωக = ⋂ଷ୧ୀଵ Ω୧க and Δୡ = Δୡ({1, … ,6}) we obtain 

 
 x ∈ Ωக ⇔ π(x) ∈ Δୡ. (29)
 
Now, we are able to prove Theorem 3.1. 
Proof: Fix xଵ ∈ S. It is sufficient to show that in the sequence xത = xത(s∗, xଵ) 

there exists an element xത belonging to Vଷ, where s∗ = (sଵக, sଶக, sଷக). Indeed, if xത ∈Vଷ then xതା୩ = ା୩ xത + ୩ା୩ B, so lim→ஶxത = B. 
First we show that almost all elements of the sequence xത belong to Ω =⋂ଷ୧ୀଵ Ω୧, for every η > 0. 
The map φ given by (24) is determined by the strategy profile s∗, i.e. φ = G ∘s∗. Consider φ: S෨ → S෨ and V: P → ℝ given by  
 
 φ(x) = {π(φ(y)):  π(y) = x},V(x) = max{〈v୧, x〉: i = 1, … ,6}.  

 
We verify that V is a Lapunov type function for φ with the constant c, for an 

arbitrary c > 0. Let us fix x ∈ S෨ such that 〈vଵ, x〉 > 0. If y ∈ S and π(y) = x then 〈vଵ, y〉 = 〈vଵ, x〉.Thus yଷ − yଶ > 0 and therefore y ∉ Ωଶ ∪ Φଷ. By (26), (28), we 
have y ∉ Vଶଵ ∪ Vଷଶ. Since φ(y) ∈ {Cଵଵ, Cଷଵ, Cଵଶ, Cଶଶ, B}, we obtain 〈vଵ, ω〉 ≤ 0 for ω ∈φ(x)). We use similar arguments to show that if 〈v୧, x〉 > 0 and ω ∈ φ(x) then 〈v୧, ω〉 ≤ 0, for i = 2, … ,6. 
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Fix η < min{ε, pଷ − ଶ୮మା୰మଷ , ୮భାଶ୰భଷ − r} . By Proposition 2.10 and (29), there 
exists N such that xത୬ ∈ Ω for n > N. We claim that there exists M > N such that xത ∈ Vଷ. Suppose to the contrary that xത ∉ Vଷ for every M > N. Then φ(xത) ∈{Cଵଵ, Cଶଵ, Cଷଵ, Cଵଶ, Cଶଶ, Cଷଶ} for M > N. By Proposition 2.7, we obtain that z ∈(୮భାଶ୰భିଷ , ଶ୮మା୰మାଷ ) for M sufficiently large, where the point (z, z, z) is the 
projection of xത onto u.  

But, if x ∈ Ω\Vଷ then ୶భା୶మା୶యଷ ∉ (୮భାଶ୰భିଷ , ଶ୮మା୰మାଷ ). Indeed, if x୧ + x୨ > 2pଷ 
and x ∈ Ω then ୶భା୶మା୶యଷ > pଷ − ଷ. If x୧ < r and x ∈ Ω then ୶భା୶మା୶యଷ < r + ଶଷ η.  

QED  
Now, we are in a position to prove Theorem 3.2. 
Proof: Let xଵ ∈ S and η > 0. Our aim is to prove that almost all elements of 

the sequence xത = xത((sଵக, sଶக, sଷ), xଵ) belongs to Ωகା: = Ωଵகା ∩ Ωଶகା. We have  
 
 x ∈ Ωகା ⇔ π(x) ∈ Δୡ({1, 2, 3, 6}), (30)
 

where c: = கା√ଶ . We show that the function V∗: P → ℝ given by  

 
 V∗(x) = max{〈v୧, x〉: i = 1,2,3,6} 
 

is the Lapunov type function for φ∗: S෨ → S෨ with the constant c, where  
 
 φ∗ = {π(z);   z ∈ φ∗(y), π(y) = x} 
 

and  
 
 

φ∗(y) =
ەۖۖۖ
۔ۖۖ
,Cଵଵ}ۓۖ Cଶଶ} if y ∈ Vଵ ∩ (S\Vଶ),{Cଶଵ, Cଵଶ} if y ∈ (S\Vଵ) ∩ Vଶ,{B, Cଷଶ} if y ∈ Vଵ ∩ Vଶ,{A, Cଷଵ} if y ∈ (S\Vଵ) ∩ (S\Vଶ).

 

 
 The map φ: S → S induced by the profile (sଵக, sଶக, sଷ) is a selection of φ∗. 

If 〈v, x〉 > 0 (x ∈ S෨) and π(y) = x (y ∈ S) then yଵ > yଶ and thus y ∉ Ωଶ ∪ Φଵ. 
By (27), we have Vଶ ∩ (S\Vଵ) ⊂ Ωଶ ∪ Φଵ. Thus φ∗(y) ∩ {Cଶଵ, Cଵଶ} = ∅. So, we have 〈v, ω〉 < 0 for ω ∈ φ∗(x). 

Using similar arguments we show that if 〈vଷ, x〉 > 0 then 〈vଷ, ω〉 ≤ 0 for ω ∈φ∗(x). 
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Suppose that 〈vଵ, x〉 ≥ V∗(x) − δ (x ∈ S෨) and π(y) = x (y ∈ S), where δ < √ଶ. 

Then 〈vଵ, x〉 = 〈vଵ, y〉 > க√ଶ. If z ∈ Ωଶக  then 〈vଵ, z〉 ≥ ଵ√ଶ (zଷ − zଶ) > க√ଶ. Thus, we 
have y ∉ Ωଶக ⊃ Vଶ and therefore φ∗(y) ⊂ {Cଵଵ, Cଶଶ, Cଷଵ, A}. So, 〈vଵ, ω〉 ≤ 0 for ω ∈φ∗|(x). 

In the similar way we prove that if 〈vଶ, x〉 ≥ V∗(x) − δ and ω ∈ φ∗(x) then 〈vଶ, ω〉 ≤ 0. 

 
By Proposition 2.10, we obtain that almost all elements of the 

sequence (π(xത)) belongs to Δୡ({1, 2, 3, 6}). By (30), we have that 
almost all elements of the sequence (xത) belongs to Ωகା. If x ∈ Ωகା 
then xଵ > xଷ − (ε + η) and xଶ > xଷ − (ε + η) and so xଷ < pଷ + ଶଷ (ε + η)   
(xଵ + xଶ + xଷ ≤ 3pଷ for x ∈ S). 

QED 

 
Remark. Reasoning as in the proofs of Theorem 3.2 and Theorem 3.3, we 

can conclude that good strategies are safe and strong Nash equilibria not only in 
the class of Smale’s strategies, but also if ”loyal” players adopt good strategies, 
then ”disloyal” players can even play the random choice in each repetition. 
It does not change the properties (20), (21), (22) and (23). 

Example 2 Let the stage game G be given by:  

 
 n P୍ (n) P୍(n)0 − 201 10 282 18 363 26 −  

 
 This game satisfies conditions (13) – (17). 

Let s୧∗: S → {I, NI} be the ε-good strategy for the i-th player, i = 1,2, and 0 <ε < ଵଶ. Let Z = conv{A, B, Cଷଵ, Cଷଶ} = {x ∈ S: xଵ = xଶ} and D = (26 − கଶ , 26 − கଶ , 26 + கଶ). 
We present the construction of the third player strategy sଷ∗: S → {I, NI} such that  

 
 lim→ஶx(s∗, xଵ) = D for every xଵ ∈ Z. 

 
 We have Vଵ ∩ Z = Vଶ ∩ Z. We set  

 
 sଷ∗(x) = ൜NI if x ∈ Vଵ ∩ Z ∩ co{B, D, Cଷଵ}I elsewhere.    
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 The map φ induced by the strategy profile s∗ ൌ ሺsଵ∗, sଶ

∗, sଷ
∗ሻ is given by  

 
 

φሺxሻ ൌ ቐ
B if	x ∈ Vଵ ∩ Z\coሼB, D, Cଷ

ଵሽ,
Cଷ
ଶ if	x ∈ Vଵ ∩ Z ∩ coሼB, D, Cଷ

ଵሽ
Cଷ
ଵ if	x ∈ Z\Vଵ.

, 

 
 The values of the map φ outside the set Z have no influence onto the trajectory 
xതሺs∗, xଵሻ if xଵ ∈ Z. The map φ: Z → Z satisfies the Blackwell condition for the 
triangle coሼCଷଵ, Cଷଶ, Dሽ in the domain Z. The map φ: Z → Z satisfies the Blackwell 
condition for the sum of intervals BD ∪ DCଷଵ in the domain Z. By Proposition 2.1, 
the sets coሼCଷଵ, Cଷଶ, Dሽ and BD ∪ DCଷଵ are week attractors. To conclude that the 
interval BD is a weak attractor we apply Proposition 2.5 taking A ൌ BD ∪ DCଷ

ଵ and 
B ൌ BD. By Proposition 2.4, the intersection of weak attractors coሼCଷଵ, Cଷଶ, Dሽ and 
A ൌ BD is a weak attractor. The intersection equals to the set ሼDሽ. 

 
4. CONCLUSIONS 

 
This paper is concerned with the specific model of social dilemmas. Such 

models have a very special place in game theory as they describe real social 
problems of modern world: resources depletion, pollution and overpopulation. 
The main characteristic of such models is that each player gain more by not 
cooperating when opponents fix their choices and all individuals are better off if 
all cooperate. The lack of optimality of Nash equilibrium is the most interesting 
problem, because as we can observe in the real world, people are keen to 
cooperate with each other on the certain conditions. As we can find in Axelrod 
(1984), strategies that effectively encourage people to cooperate are: nice, 
forgiving, retaliatory and are found on simple rules. 

The key idea in our approach is to apply Smale’s idea for 3-payer extension of 
Prisoner’s Dilemma. Our strategies are deterministic and satisfy conditions that 
are postulated in Axelrod (1984). What is more, ߝ-good strategies satisfy condition 
(5) which guarantee that using this strategy our payoff shall not be different than 
our opponents payoffs for more than ߝ. This constant ߝ is totally controlled by the 
player who choose it. This property is not received by any other author. 

Our future aim is to extend the idea presented in Plaskacz (2018) onto the type 
of games considered in the paper - three players repeated social dilemmas. The 
idea is as follows. We would like to analyze the repeated three players game by 
evolutionary games methods. To achieve this goal, we threat the repeated game as 
a new game in which a player action is a point in the ߚ-core of the original game. 
Using methods presented in the paper each point from the ߚ-core should 
determine ߝ-good strategy. The main difficulty is to obtain the payoff in the case 
when players choose different points in the ߚ-core. The payoffs in the new game 
are determined by the payoff in the repeated game. 
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APPENDIX 

 
In this Appendix we shall present the proof of Proposition 2.10. We start with 

the necessary theorem. 
Theorem 5.1 If S is a bounded convex subset of H and V: H → ℝ given by (9) 

is the Lapunov type function for the mulivalued map φ: S → S with the constant c > 0, then  
 
 ∃γ > 0,    ∃α > ߙ∀    ,0 ∈ [0, α],    ∀x ∈ S\Δୡ,    ∀ω ∈ φ(x) V(αω + (1 − α)x) ≤ V(x) − αγ. 
 
Proof: By (10) we choose δ ∈ (0, c). Let M = sup{|x|: x ∈ S}. For x ∈ S\Δୡ we 

define a set of indexes I(x) by  
 
 I(x) = {j ∈ {1, . . . , k}: V୨(x) ≥ V(x) − δ} 
 

and a subset O୧ of S, related to the fixed index i:  
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 O୧: = {x ∈ S\Δୡ: V୧(x) ≥ V(x) − δ}. (31)
 

 If x ∈ O୧ then V୧(x) > 0 and 〈p୧, ω〉 ≤ 0 for all ω ∈ φ(x). Obviously, i ∈ I(x) is 
equivalent to x ∈ O୧ for x ∈ S\Δୡ. 

We fix positive constants: r, γ and α such that  
 
 r < δ2 ,        γ < ܿ − α        ,ߜ < ݉݅݊ ൜ c − δ − γc − δ + M , r2M , 1ൠ 
 

and take an arbitrary x ∈ S\Δୡ. The following condition holds true  
 
 ∀y ∈ B(x, r) = {y ∈ S\Δୡ: ||x − y|| < r}    ∃i ∈ I(x)    V(y) = V୧(y). (32)
 

 Indeed, if j ∉ I(x), then V୨(x) < V(x) − δ. Since V୨ and V are lipschitz 
continuous with the constant L=1, we get V୨(y) < V(y). Therefore, there exists i ∈ I(x) such that V(y) = V୧(y). 

If i ∈ I(x) then V୧(x) ≥ V(x) − δ ≥ c − δ and 〈p୧, ω〉 ≤ 0 for ω ∈ φ(x). Let α ∈[0, α] then x: = αω + (1 − α)x ∈ B(x, r) and V୧(xబ) ≤ V୧(x). Moreover,  
 V୧(x) ≥ V୧(xబ) ≥ −α||ω|| + (1 − α)(c − δ) ≥ c − δ − α(c − δ + M) ≥ γ 
 

and  
 
 V୧(x) ≤ (1 − α)V୧(x) ≤ V୧(x) − αγ. 
 

 Thus we have obtained that  
 
 ∀i ∈ I(x),    ∀α ∈ [0, α],    ∀ω ∈ φ(x),    V୧(x) ≤ V୧(x) − αγ.  (33)
 

 The function V has the following property: if V(a) = V୧(a) and V(b) = V୧(b) 
then V(λa + (1 − λ)b) = V୧(λa + (1 − λ)b) for λ ∈ [0,1] so the set  

 
 {α ∈ [0, α]: V୧(αω + (1 − α)x) = V(αω + (1 − α)x)} 
 

is a closed segment. By (32) there exists s ≤ k and a partition 0 = β < βଵ <. . . <βୱ = α such that  
 
 ∀j ∈ {0, . . . , s − 1}, ∃i = i(j) ∈ I(x), ∀α ∈ [β୨, β୨ାଵ],    V(x) = V୧(x). (34)
 

 Let α ∈ [β, βଵ]. In view of (34) there exists i = i(0) ∈ I(x) such that V(x) =V୧(x) and by (33):  
 
 V(x) = V୧(x) ≤ V୧(x) − αγ = V(x) − αγ. 
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 Suppose that  
 

 V(x) ≤ V(x) − αγ,    ∀k = 1, . . . , j − 1    ∀α ∈ [β୩, β୩ାଵ] 
 
and take α ∈ [β୨, β୨ାଵ]. By (34) there exists i = i(j) such that V(x) = V୧(x). 
Since α ∈ [β୨, β୨ାଵ], there exists ξ ∈ [0,1] such that x = ξω + (1 − ξ)xஒౠ. 
Therefore,  
  

 x = ξω + (1 − ξ)(β୨ω + (1 − β୨)x) = (ξ + (1 − ξ)β୨)ω + (1 − ξ)(1 − β୨)x, 
 
so  
  

 α = ξ + (1 − ξ)β୨ ≤ ξ + β୨. 
 

 
 It is obvious that  

 
 V(x) = V୧(x) = V୧(ξω + (1 − ξ)xஒౠ) = ξ < ߱, p୧ > +(1 − (ߦ < xஒౠ, p୧ > ≤ (1 − ξ)V୧(xஒౠ) = V୧(xஒౠ) − ξV୧(xஒౠ) ≤ V୧(xஒౠ) − ξγ. 
 

 Then we get  
 
 V୧(xஒౠ) − ξγ ≤ V(x) − β୨γ − ξγ = V(x) − γ(β୨ + ξ) ≤ V(x) − αγ, 
 

hence,  
 
 V(αω + (1 − α)x) ≤ V(x) − αγ. QED
 

 The proof of Proposition 2.10. 
Proof: Fix (xത୬)୬ୀଵஶ  satisfying (12). First, we prove that  
 
 ∀M, ∃N ≥ M,    xത ∈ Δୡ. (35)
 

 Suppose, contrary to our claim, that xത୬ ∉ Δୡ for n ≥ m. We choose k ≥ m such 
that ଵ୩ < α, where α and γ are given by Theorem 5.1. Thus  

 
 V(xത୩ା୪ାଵ) = V ൬ 1k + l + 1 x୩ା୪ାଵ + k + lk + l + 1 xത୩ା୪൰ ≤ V(xത୩ା୪) − γ 1k + l + 1 ≤ … ≤ V(xത୩) − γ ൬ 1k + l + 1 + ⋯ + 1k + 1൰ ł→ஶሱۛሮ −∞ 

 
which contradicts to the assumption that V(xത୬) ≥ c for n ≥ m. 



294 Przegląd Statystyczny, tom LXV, zeszyt 3, 2018 
 

Fix cଵ > c. By Proposition 2.6, we choose M such that |xത୪ାଵ − xത୪| < cଵ − c for l ≥ M. By (35), there exists N ≥ M such that xത ∈ Δୡ. If xതା୪ ∈ Δୡ then V(xതା୪ାଵ) ≤ V(xതା୪) + |xതା୪ାଵ − xതା୪| < cଵ. If xതା୪ ∈ Δୡభ\Δୡ then V(xതା୪ାଵ) ≤V(xതା୪) < cଵ. QED  

 
SILNE I BEZPIECZNE RÓWNOWAGI NASHA W PEWNYCH GRACH 

POWTARZANYCH 3 GRACZY 
 

Streszczenie 
 
W pracy analizujemy grę nieskończenie powtarzaną 3-graczy będącą rozsze- 

rzeniem gry typu Dylemat Więźnia. Rozważamy grę 3-graczy w postaci normalnej 
z pełną informacją, w której każdy gracz ma dwa działania. Zakładamy, że gra jest 
symetryczna i powtarzana nieskończenie wiele razy. Strategią gracza w grze po-
wtarzanej jest funkcja zdefinowana na uwypukleniu zbioru wypłat. Naszym celem 
jest skonstruowanie mocnej równowagi Nasha w grze powtarzanej, to znaczy 
profilu strategii, który jest odporny na odstępstwa od strategii równowagi przez 
koalicję graczy. Skonstruowane strategie równowagi są bezpieczne, to znaczy 
wypłata gracza, który nie odstępuje od strategii równowagi jest niemniejsza od 
wypłaty odpowiadającej równowadze w grze etapowej, oraz wypłata gracza od-
stępujacego od równowagi może być większa od wypłaty gracza nieodstępujące-
go od strategii równowagi, ale nie więcej niż o pewną stałą dodatnią, która może 
być wybrana dowolnie mała przez gracza nieodstępującego od równowagi. Nasza 
konstrukcja jest inspirowana koncepcją dobrych strategii Smale’a opisaną w jego 
pracy z 1980 roku, gdzie rozważany był powtarzany Dylemat Więźnia. W dowo-
dach wykorzystujemy wyniki o zbliżaniu oraz silnym zbliżaniu. 

Słowa kluczowe: gra powtarzana, silna równowaga Nasha, metoda  
Blackwell'a w problemie zbliżania, metoda funkcji Lapunowa 

 
STRONG AND SAFE NASH EQUILIBRIUM IN SOME 

REPEATED 3-PLAYER GAMES 
 

Abstract 
 
The paper examines an infinitely repeated 3-player extension of the Prisoner’s 

Dilemma game. We consider a 3-player game in the normal form with 
incomplete information, in which each player has two actions. We assume that 
the game is symmetric and  repeated  infinitely many times. At each stage, 
players make their choices knowing only the average payoffs from previous 
stages of all the players. A strategy of a player in the repeated game is 
a function defined on the convex hull of the set of payoffs. Our aim is to 



T. Kufel, S. Plaskacz, J. Zwierzchowska    Strong and safe Nash equilibrium… 295 
 

 

construct a strong Nash equilibrium in the repeated game, i.e. a strategy profile 
being resistant to deviations by coalitions. Constructed equilibrium strategies are 
safe, i.e. the non-deviating player payoff is not smaller than the equilibrium 
payoff in the stage game, and deviating players’ payoffs do not exceed the non-
deviating player payoff more than by a positive constant which can be arbitrary 
small and chosen by the non-deviating player. Our construction is inspired by 
Smale’s good strategies described in Smale’s paper (1980), where the repeated 
Prisoner’s Dilemma was considered. In proofs we use arguments based on 
approachability and strong approachability type results. 
Keywords: repeated game, strong Nash equilibrium, Blackwell’s approacha- 

bility, Lapunov function method 
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1. INTRODUCTION

The role of statistical testing has been the subject of discussion for years. 
An overview of this topic was given decades ago for instance in Cox et al. 
(1977). Nevertheless, the matter is still important, which confirms for example 
the paper on statistical testing in finance written by Kim, Ji (2015). As was 
mentioned in that paper, many statistical tests are used in practice with little 
consideration of their key characteristics as size and power. These character-
istics should be intensively studied at least in simulations as, for example, in 
Pavia (2015), Górecki, Smaga (2015) or Orzeszko (2014). In this paper, we 
investigate the finite sample behavior of some goodness-of-fit testing proce-
dures for truncated distributions known in the literature. Such behavior was not 
considered in the original paper introducing these tests. The paper is an ex-
tension of the results obtained in the bachelor thesis by Lach (2017). 

The shape of a distribution in the tails is very important in many areas of sci-
ence. Chernobai et al. (2015) adapted the standard goodness-of-fit tests for left-
truncated distributions. The modifications of standard procedures help to take the 
decision, whether the tail belongs to a specified distribution or not. The tests were 
implemented in the R package truncgof (R Core Team, 2017; Wolter, 2012). The 
detailed description of their seven tests is given in section 2. Five of them are the 
commonly used standard tests with the modified null hypothesis cumulative distri-
bution function. Following the original notation, these tests will be referred to as 
the ܦܣ∗ (supremum Anderson-Darling), ܦܣଶ∗ (quadratic Anderson-Darling), ܵܭ∗ 
(Kolmogorov-Smirnov), ܸ∗ (Kuiper) and ܹଶ∗ (Cramér-von Mises) tests, respective-
ly, in the remainder of the article. The other two tests are specially designed for the 
upper tails. They use the modified null hypothesis cumulative distribution function 
and the new weighing function. These are modified Anderson-Darling tests, which 
will be referred to as ܦܣ௨∗  and ܦܣ௨ଶ∗  tests, respectively. 
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The tests by Chernobai et al. (2015) are often used in the literature, espe-
cially in the field of the operational risk calculation. Here, the choice of appro-
priate severity distribution is of crucial importance. In the process of calculating 
the aforementioned risk, Fischer, Jakob (2016) used a compound severity 
distribution, which involves dividing it into the body and the tail by a threshold. 
The Authors conclude that positive tempered ߙ-stable distribution better fits 
empirical data in the tail than lognormal, Weibull, gamma and generalized 
gamma distributions. To assess goodness-of-fit of the distributions in the tail 
they used among others the ܦܣ௨ଶ∗  test for truncated distributions. Chernobai et 
al. (2006) considered the following severity distributions: exponential, lognor-
mal, Weibull, Burr, generalized Pareto (GPD) and log ߙ-stable. The null hy-
pothesis that the cumulative distribution function belongs to truncated versions 
of the families of these distributions was verified by using the procedure de-
scribed in Chernobai et al. (2015). The tests for truncated distributions were 
also used by Chernobai et al. (2010), who analyzed the effects of model mis-
specifications on Value-at-Risk and Conditional Value-at-Risk figures. 

Examples of applications of the tests by Chernobai et al. (2015) can also be 
found in hydrology and social sciences. To estimate flood peaks, Brunner et al. 
(2017) used among others modified Anderson-Darling test for the upper tail to 
verify fitting of GPD and generalized extreme value distribution (GEV) to observed 
flood hydrographs. As was stated in the study, the test confirmed that the GPD fits 
well to the peak discharges and the GEV distribution fits well to the flood volumes. 
In the field of social sciences, Fagiolo et al. (2010) studied distributional properties 
of Italian household consumption expenditures. To study the tails of the distribu-
tions, they truncated distributions in several points and then they used standard 
truncated goodness-of-fit normality tests. Clementi et al. (2012) proposed a new 
model for income distribution: the ߢ-generalized distribution. As the fit in the right 
tail was of greater importance here, they decided to compare it with Singh-
Maddala or Dagum type I distributions using upper tail goodness-of-fit tests. 

In the majority of the studies listed above, the truncated tests were not the on-
ly ones, upon which the decisions were taken. However, it is clear that they had 
impact on the researchers’ final decisions and that the range of possible applica-
tions of them is wide. Until now no studies concerning the size and the power of 
these tests for the left truncated distributions were published. The aim of this 
paper is to fill this gap. 

The research of this paper is similar to that conducted by Pavia (2015). The 
main difference is that Pavia concentrated on complete distributions, while this 
paper refers to truncated ones. Pavia conducted the research for different sample 
sizes (10, 20, 50, 100, 200, 500). In this paper, the research is conducted for the 
sample of size 1000. Pavia verified the empirical sizes and the empirical powers of 
several goodness-of-fit tests available in the R packages, including five tests from 
the truncgof package (ܦܣ ,∗ܦܣଶ∗, ܵܭ∗, ܸ∗ and ܹଶ∗). As the Author was interested 
only in complete distributions, he omitted the tests from the truncgof package de-
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signed for the upper tail. When the truncation point is not set, the tests from this 
package can be used also in the case of complete samples. According to the 
analysis of the sizes of the tests, the main conclusion was that most of the tests 
from the truncgof package are giving unacceptable results, especially for bounded 
distributions. Only the ܦܣ∗ test from this package achieved acceptable rejecting 
rates for all examined distributions except for the uniform one. In case of the ex-
ponential distribution, the ܸ∗ test also gave reasonable results. When analyzing 
the power of the tests, in most of the examples the tests implemented in the trun-
cgof package showed superior power over the rest of the tests taken into compari-
son. The results for the bounded distribution were again unacceptable. 

The study in this paper is based on the artificial data generated from the distri-
butions that are used to describe the tails of asset returns. The shape of the tails 
has great importance in the assessment of the risk. The origins of the studies on 
the distribution of asset returns dates back to the year 1900. At that time Louis 
Bachelier noticed, that according to the Central Limit Theorem the distribution of 
the asset returns in long term should be Gaussian (Haas, Pigorsch, 2009). That 
implies that the tails of the distributions should be thin and tend to zero faster than 
exponentially (Feller, 1950). This conception was prevailing until 1963, when 
Mandelbrot (1963) noticed fat tails of distributions of the cotton prices logarithms. 
One of the first distributions proposed to replace the normal distribution was the 
t-distribution with power decaying tails (Haas, Pigorsch, 2009). However, recent 
studies show that most of the asset returns have semi-heavy tails (Echaust, 2014; 
Piasecki, Tomasik, 2013). The power-exponential distribution could be proposed 
here as alternative. Depending on parameters, its tails can change from thinner 
tails than those of normal distribution to fat ones. Another example might be 
Weibull distribution, whose tails vary from thin to fat. The distributions mentioned 
in this paragraph were chosen for the research due to their historical meaning or 
the possibilities they offer. For the details of the Central Limit Theorem and these 
distributions the reader is referred to Krzyśko (2000) and Magiera (2005). 

The remainder of this paper is organized as follows. In section 2, the tests for 
truncated distributions introduced in Chernobai et al. (2015) are presented. Sec-
tion 3 contains the results of the simulation studies. Finally, section 4 draws 
some conclusions. 

 

2. TESTS FOR TRUNCATED DISTRIBUTION 

 
This section contains description of seven goodness-of-fit tests for truncated 

distributions, which were introduced in Chernobai et al. (2015). Five of these 
tests are modifications of standard goodness-of-fit tests. The remaining testing 
procedures are specifically constructed for upper tails of distributions. Before 
the description of the tests, short information about upper tails in finance is 
given. 
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Upper tails in finance are defined as (ݔ)ܨതതതതതത = ܲ(ܺ >  is sufficiently ݔ where ,(ݔ
high, which means that ݔ → ∞ (Haas, Pigorsch, 2009). In case of the asset re-
turns, even 5% is enough high to be set as the truncation point (Haas, Pigorsch, 
2009). However, banks and other financial institutions may wish to define the 
tails in terms of the quantiles of the distribution. When calculating risk measures, 
like VaR or CVaR, usually quantiles of level 0.95, 0.975 or 0.99 are taken into 
account, although higher quantiles also appear (Haas, Pigorsch, 2009). On the 
other hand, when choosing an investment strategy, investors might be interested 
in much lower quantiles of distributions. 

Chernobai et al. (2015) adapted the Kolmogorov-Smirnov, Kuiper, Cramér-von 
Mises and Anderson-Darling tests, which are standard goodness-of-fit tests, for 
truncated distributions. Anderson, Darling (1952) enabled giving different weights 
to specific parts of a distribution function, multiplying classical Kolmogorov and 
Cramér-von Mises statistics by the weight function (ݔ)ߖ (where (ݔ)ߖ ≥ 0 for ݔ ∈[0,1]). Anderson and Darling considered two weight functions: (ݔ)ߖ = 1 and (ݔ)ߖ = 1)ݔ]/1 −  While for the first function test statistics reduce to the .[(ݔ
standard Kolmogorov and Cramér-von Mises statistics, the second function 
gives greater importance to the tails of the distribution function. 

Let us assume that we have a sample ܆ = ( ଵܺ, … , ܺ)′ of i.i.d. variables with 
an unknown distribution function ܨ. To formulate a goodness-of-fit problem for 
truncated distributions, Chernobai et al. (2015) used the appropriate distribution 
function for the truncated sample. Let ܨ denote distribution function for the 
complete sample and let ܪ be the truncation point. The modified distribution 
function for the truncated sample is then defined by the following formula: 
(ݔ)∗ܨ   = ቐܨ(ݔ) − 1(ܪ)ܨ − (ܪ)ܨ , for ݔ ≥ 0,ܪ  , for ݔ < .ܪ   (1)

 
The complete sample of observations consists of ݊ items. The ordered sam-

ple of observations ݔ(ଵ) ≤ (ଶ)ݔ ≤ ⋯ ≤  has the empirical distribution function ()ݔ
(Krzyśko, 2004): 
 
;ݔ)ܨ  (܆ = #{1 ≤ ݆ ≤ ݊: ܺ ≤ ݊{ݔ , ݔ   ∈ ܴ, ܆ ∈ ܴ. (2)

 
The difference between the values of the empirical distribution function for two 

neighboring points is equal to 1/݊. In case of left truncated distribution, the 
complete sample is the sum ݊ = ݉ + ݊, where ݉ denotes the number of un-
known observations below the truncation point and ݊ is the number of observa-
tions equal to or greater than the truncation point. The empirical distribution 
function for the truncated sample is the same as for the complete sample, but 
the difference between the values of the empirical distribution function for two 
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neighboring points is equal to 1/݊. The empirical distribution function for the 
observed part of the whole population is then (Chernobai et al., 2015): 
 
;ݔ)ܨ  1)(܆ − ((ܪ)ܨ + (ܪ)ܨ

= ۔ە
(ܪ)ܨۓ ݔ < ݆݊,(ଵ)ݔ (1 − ((ܪ)ܨ + (ܪ)ܨ ()ݔ ≤ ݔ < ,(ାଵ)ݔ ݆ = 1, … , ݊ − 1,1 ݔ ≥ .()ݔ  

 

(3)

 
Thus, the null and alternative hypothesis can be formulated as follows: 

 
:ܪ  ܨ = :ଵܪ,∗ܨ ܨ ് ∗. (4)ܨ

 
To test the null hypothesis against the alternative one, the null distributions of 

the test statistics (described below) are approximated by the Monte Carlo method. 
The detailed procedure for computing the corresponding -values is as follows: 
1. Compute the test statistic ܶ௦ for the original data. 
2. Generate a sample of ݊ observations from the theoretical distribution func-

tion ܨ∗. Each observation has to be greater than or equal to ܪ. 
3. Compute the test statistic ܶ for the data generated in step 2. 
4. Repeat steps 2 and 3 ܰ times. Let ଵܶ, … , ேܶ denote the obtained values of the 

test statistic. 
5. Compute the -value according to the formula (1/ܰ) ∑ ேୀଵܫ ( ܶ ≥ ܶ௦), where ܫ(ܵ) denotes the indicator function of a set ܵ. 

The null hypothesis is rejected, when the -value is less than or equal to the 
nominal significance level ߙ. Otherwise, we do not have any evidence to reject the 
null hypothesis. The asymptotic distributions of the test statistics considered in this 
paper are not known, which is one of the reasons of using the above procedure. 

Following Chernobai et al. (2015), the test statistics applied to verify the null 
hypothesis are divided into three groups: (1) the supremum class, (2) the quad-
ratic class, (3) the test statistics specifically designed to test goodness-of-fit in 
the upper tail. 

The first group is made up of three modified statistics: Kolmogorov-Smirnov 
-in supremum version. The Kol (∗ܦܣ) Kuiper (ܸ∗) and Anderson-Darling ,(∗ܵܭ)
mogorov-Smirnov test is based on the statistic called Kolmogorov distance, 
which measures the distance between empirical distribution function and given 
distribution function. The modified version of the Kolmogorov-Smirnov statistic is 
as follows: 
 

∗ܵܭ  = √݊sup௫ ;ݔ)ܨ| (܆ − (5) .|(ݔ)∗ܨ
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The Kuiper test statistic derives from the Kolmogorov distance. It is the sum of 
the greatest positive and negative difference between the empirical distribution 
function and the given distribution function. The modified version of the Kuiper 
test statistic is given by the following formula: 
 

 ܸ∗ = √݊(sup௫ ;ݔ)ܨ} (܆ − {(ݔ)∗ܨ + sup௫ (ݔ)∗ܨ} − ;ݔ)ܨ (6) .({(܆
 

The Anderson-Darling test statistic in the supremum version is also based on the 
distance between two distribution functions, but it put more emphasis on the tails: 
 
∗ܦܣ  = √݊sup௫ ;ݔ)ܨ| (܆ − 1)(ݔ)∗ܨඥ|(ݔ)∗ܨ − (7) .((ݔ)∗ܨ

 
The second group of statistics consists of two statistics: Cramér-von Mises 

(ܹଶ∗) and Anderson-Darling (ܦܣଶ∗) in quadratic version. Both statistics measure 
the area between empirical distribution function and given distribution function, 
but they assign different weights to observations. Cramér-von Mises statistic has 
the weight function equal to one, and its customized version is of the form: 
 
 ܹଶ∗ = ݊ න (ஶ

ு ;ݔ)ܨ (܆ − (8) .(ݔ)∗ܨଶ݀((ݔ)∗ܨ

 
The Anderson-Darling statistic in quadratic version again puts more weight in 

the tails: 
 
∗ଶܦܣ  = ݊ න ;ݔ)ܨ) (܆ − 1)(ݔ)∗ܨଶ((ݔ)∗ܨ − ஶ((ݔ)∗ܨ

ு (9) .(ݔ)∗ܨ݀

 
New statistics proposed in Chernobai et al. (2015) are based on the Anderson-

Darling statistics and give more importance to the upper tail of the distribution. The 
Authors introduced a new weight function, namely (ݔ)ߖ = 1/(1 − -After substi .(ݔ
tuting this function, the Anderson-Darling statistics for the truncated samples in 
supremum (ܦܣ௨∗ ) and quadratic (ܦܣ௨ଶ∗ ) version are respectively as follows: 
 

∗௨ܦܣ  = √݊sup௫ ;ݔ)ܨ| (܆ − 1|(ݔ)∗ܨ − (ݔ)∗ܨ , (10)

∗௨ଶܦܣ  = ݊ න ;ݔ)ܨ) (܆ − ଶ(1((ݔ)∗ܨ − ଶஶ((ݔ)∗ܨ
ு (11) .(ݔ)∗ܨ݀

 
The computational formulas for the test statistics for truncated distributions 

(for quadratic versions of the statistics and for the new statistics) can be found in 
Chernobai et al. (2015). 
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3. SIMULATION STUDIES 
 

This section contains the results of the simulation studies, conducted for sev-
en modified goodness-of-fit statistics presented in section 2 and for the selected 
distributions described in section 1. The aim of the studies was to evaluate the 
size and the power of the goodness-of-fit tests for truncated distributions on the 
basis of artificial data. The simulation studies were conducted for different tail 
thickness and truncation points. This section is organized as follows: first part 
describes the methodology of the studies, next the results of the evaluation of 
the size and the power are presented, finally some details of implementation in 
R program are given. 
 
3.1. Description of simulation experiments 
 

To compute the empirical sizes of the analyzed tests, the following procedure 
was applied: 
1. Generate n observations from the theoretical distribution that appears in the 

null hypothesis. 
2. Apply all the analyzed tests to the data generated in point 1. Note the 

p-values of the tests. 
3. Repeat the steps described in points 1 and 2 M times, were M is sufficiently 

large number. 
4. Compute the empirical size of each test as the mean of a number of rejections 

of the null hypothesis.  
To compute the empirical power of the tests, in point 1 of the above proce-

dure, the data were generated from a different distribution than it was stated in 
the null hypothesis. The steps from 2 to 4 remained the same. 

To determine the p-values, the testing procedures described in section 2 
were carried out. The -values were calculated on the basis of ܰ = 100 Monte 
Carlo samples, which is the default value of ܰ in the truncgof package. Within 
each simulation a sample of ݊ = 1000 observations was generated. The num-
ber of simulation replicates was ܯ = 1000. The studies were conducted for 12 
distributions described in the next paragraph and for 5 truncation points ܪ =2, 4, 6, 8, 10. Altogether 60 experiments were conducted to evaluate both the 
empirical size and power. The results were verified on the significance level ߙ = 5%.  

The sample size ݊ = 1000, was determined on the basis of the simulation 
studies conducted for the selected cases. Namely, figure 1 presents the empir-
ical size and power of the analyzed tests for some cases under t-distribution. 
The power of all analyzed tests improved with the increase of the sample size 
to ݊ = 1000. In many cases also improvement in the size is visible. 
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Figure 1. The size ((5)ݐ distribution, H=6) and the power ((5)ݐ vs (6)ݐ distributions, H=6) 
of the analyzed tests with respect to the sample size 

 
Source: own calculation. 

 

Values of the cumulative distribution functions for the chosen truncation points 
range from 0.4592 to 0.9999. In insurance data studies even lower levels are 
considered. Respective values in Chernobai et al. (2006) amounted to 0.0387 
and 0.8212 for the conditional distributions. On the other hand, in finance, some 
of the risk measures like VaR and CVaR, are based on as high quantiles of dis-
tributions as 0.95, 0.975 or 0.99, as was mentioned at the beginning of section 2. 

The actual distributions in experiments are: normal, t-distribution, power-
exponential and Weibull. The notation used for these distributions in the paper is 
as follows: ܰ(ߤ, ߤ ଶ) for the normal distribution, whereߪ ∈ ℝ is the location param-
eter and ߪ > 0 is the scale parameter; ݐ(݊) for the t-distribution, where ݊ ∈ ℕ de-
notes the degrees of freedom; ߤ)ܲܧ, ,ߪ  ,for the power-exponential distribution (
where ߤ ∈ ℝ, ߪ > 0 and  > 1 are the location, scale and shape parameters, 
respectively; ܹ݁(ߙ, ߙ for the Weibull distribution with the shape parameter (ߚ > 0 
and the scale parameter ߚ > 0. Normal distribution, t-distribution and power-
exponential distribution were used among other distributions by Piasecki, Tomasik 
(2013) to verify the shapes of the log asset returns on the polish market. The val-
ues of the estimators of these distributions’ parameters, e.g. for the WIG index for 
the chosen period labeled as ”h3”, were as follows: ܰ(0.1956, ,0.1982)ܲܧ ,(2.1561)ݐ ,(1.8623 1.5881, 1.3618). The t-distribution used by Piasecki, Tomasik (2013) 
is the generalized t-distribution with ݊ ∈ ℝା, while ܲܧ is referred to as general-
ized error distribution (GED). Burnecki et al. (2015) studied the tails of the asset 
returns and considered among others: normal distribution ܰ(0, 2) and t-distribution (4)ݐ. Weibull distribution was used for instance to assess the operational risk by 
Guegan, Hassani (2018). The estimated parameters of the distributions for the 
whole analyzed period were as follows ܹ݁(0.5896, 182.9008). However, the 
standard version of the Weibull distribution is rarely used. If ܺ has Weibull distribu-
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tion, then −ܺ has extreme value distribution of type III and is used in extreme 
value theory (Magiera, 2005). For the detailed overview of domestic and external 
researches in the field of asset returns distributions please refer to Piasecki, To-
masik (2013). 

For each distribution, three sets of parameters were considered. As average 
return rates on the stock exchange are not significantly different from zero, all 
the location parameters of the considered distributions (if they exist) were set to 
zero. To obtain different thickness of tails, the remaining parameters were 
changed. In case of the normal distribution, the thickness of the exponential tail 
was controlled by the standard deviation, that was set to ߪ ∈ {3,4,5}. In case of 
the t-distribution, the thickness of the power tail was controlled by the number of 
degrees of freedom. They were set to ݊ ∈ {1,3,5}. For the power-exponential 
distribution, the parameter  was set to 1.5, so the distribution has the tail thicker 
than exponential. Here the thickness of the semi-heavy tail was controlled by ߪ ∈ {3,4,5}. In case of the Weibull distribution, ߙ ∈ {0.8,1,1.2}, which results in 
the power, exponential and faster than exponential decaying tail. 

The tails of the distributions considered in the simulation studies are visual-
ized in figure 2. The greatest probability mass in the tails appear in the ܹ݁(0.8,3), (1,3)ܹ݁ ,(1)ݐ and (0,5,1.5)ܲܧ distributions, respectively. The tails of 
the remaining distributions practically disappeared. 

 
Figure 2. Density for the tails of the distributions 

 
Source: own calculation. 
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Figure 3. Probability distributions used in power study 

 
Source: own calculation. 

 
3.2. Discussion of simulation results 
 

Empirical sizes and powers of a test are identified with the number of rejected 
null hypothesis. The empirical size of a test should be close to a determined 
significance level. The empirical power should be as large as possible. 

The empirical sizes of the tests obtained in the simulation studies are presented 
in table 1. The results suggest dividing the tests into three groups. First group 
contains the ܵܭ∗, ܹଶ∗ and ܦܣଶ∗ tests. In this group, the empirical sizes were on 
average 8-times higher than the determined significance level. The tests achieved 
visibly better results for the t-distribution, but the average rate of rejection was 
here still 4-times higher than the determined significance level. The second group 
includes the following tests: ܸ∗ and ܦܣ௨ଶ∗ . For these tests, the average rate of 
rejection was 3-times higher than the significance level. These tests also noted 
better results for the t-distribution. Here probability of rejection of the true null hy-
pothesis was twice higher than the significance level. The third group consists of 
the remaining two tests: ܦܣ∗ and ܦܣ௨∗ . In this group, the rate of rejection of the 
null hypothesis was on average 1.5-times higher than the determined significance 
level. No clear differences among the distributions were detected. 

On the basis of figure 1 and the above results it can be stated, that the consid-
ered tests require large number of observations to control the type I error. Unfor-
tunately, the tests in the first and second group may not keep the preassigned 
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type I error level even for samples of 1000 observations. In case of the fat tailed 
distribution like (1)ݐ, the Authors made additional calculations to verify the size of 
the tests, when threshold levels are very high, ܪ = 50, 100, 150, 200, 250. The 
size of the tests remained similar to the ones given in table 1 or figure 1. The 
tests from the first group are the most liberal, and the results of the powers of 
these tests will not be further analyzed. The results for the tests from the second 
group will be presented only for the illustrative purposes. 

Table 1. EMPIRICAL SIZES OF THE TESTS (AS PERCENTAGES, ߙ = 5%) 

Actual distribution ܦܣ ∗ܸ ∗ܵܭ ܪ∗ ܹଶ∗ ܦܣଶ∗ ܦܣ௨∗ ∗௨ଶܦܣ   ܰ(0,3) 2 48.1 16.3 7.0 51.8 50.6 7.5 14.9
 4 44.9 15.0 7.0 49.6 48.3 7.9 16.7
 6 42.3 13.8 6.9 46.9 45.0 8.2 17.5
 8 40.4 12.5 7.2 44.3 42.1 8.3 16.6
 10 37.0 12.2 7.4 41.8 39.6 7.9 15.8ܰ(0,4) 2 49.3 17.0 6.7 52.9 51.5 7.5 14.6
 4 46.6 15.5 7.0 50.8 48.9 7.6 15.6
 6 44.2 14.7 6.9 49.2 47.5 8.0 17.2
 8 43.0 13.9 7.0 46.8 44.8 8.3 17.9
 10 41.2 13.5 7.2 45.4 43.7 8.3 17.6ܰ(0,5) 2 49.5 16.8 6.7 53.0 52.2 7.4 14.2
 4 47.4 16.2 7.0 51.6 50.2 7.6 15.2
 6 45.5 15.2 7.0 50.2 48.4 7.8 16.5
 8 44.0 14.3 6.9 48.4 46.7 8.0 16.5
9.4 7.5 22.8 22.9 6.4 9.7 18.8 2 (1)ݐ17.0 8.4 44.4 46.7 7.1 13.3 42.4 10 
 4 20.9 9.9 6.3 24.3 24.2 7.5 9.3
 6 21.1 9.9 6.3 24.6 24.3 7.5 9.3
 8 21.2 9.9 6.3 24.6 24.4 7.5 9.3
9.8 7.4 20.2 20.4 6.4 9.3 16.0 2 (3)ݐ9.3 7.5 24.4 24.6 6.3 9.9 21.2 10 
 4 18.8 9.8 6.4 23.1 23.2 7.4 9.6
 6 20.7 9.8 6.3 24.0 24.0 7.5 9.4
 8 21.1 9.9 6.3 24.3 24.2 7.5 9.3
10.0 7.7 19.6 18.8 6.5 9.2 15.5 2 (5)ݐ9.3 7.5 24.3 24.5 6.3 9.9 21.1 10 
 4 18.3 9.7 6.4 22.8 22.8 7.4 9.6
 6 20.5 9.7 6.3 23.6 23.6 7.4 9.5
 8 20.9 9.9 6.3 24.3 24.2 7.5 9.4
24.7 9.7 61.6 61.0 7.6 24.5 52.5 2 (0,3,1.5)ܲܧ9.3 7.5 24.2 24.4 6.3 9.9 21.1 10 
 4 49.0 19.9 7.9 55.6 55.8 10.7 26.8
 6 45.9 17.2 8.0 51.9 51.1 10.7 25.4
 8 43.3 16.0 7.8 48.6 47.8 9.9 23.7
24.2 9.2 62.7 62.5 7.6 25.4 53.9 2 (0,4,1.5)ܲܧ22.2 9.5 45.9 46.1 7.8 14.7 41.7 10 
 4 51.3 21.7 7.8 58.2 58.7 10.4 26.2
 6 49.2 19.1 7.9 54.8 55.4 10.9 27.1
 8 45.6 17.2 8.0 51.3 50.4 10.5 24.9
 10 43.4 16.1 8.0 49.1 47.8 9.9 22.9
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Table 1. EMPIRICAL SIZES OF THE TESTS (AS PERCENTAGES, ߙ = 5%) (cont.) 

Actual distribution ܦܣ ∗ܸ ∗ܵܭ ܪ∗ ܹଶ∗ ܦܣଶ∗ ܦܣ௨∗ ∗௨ଶܦܣ  23.1 9.3 64.2 62.6 7.6 25.6 54.6 2 (0,5,1.5)ܲܧ 
 4 51.2 23.3 7.8 60.6 59.8 10.2 25.7
 6 50.0 20.2 7.9 56.5 56.0 10.7 27.0
 8 47.7 18.4 7.8 53.1 53.1 10.4 25.6
 10 45.1 16.7 7.6 50.7 50.0 10.4 23.9ܹ݁(0.8,3) 2 47.4 15.6 7.0 51.2 49.8 7.6 15.8
 4 44.7 14.8 6.9 49.5 48.5 7.8 17.0
 6 44.0 14.3 7.0 48.4 46.2 7.9 17.9
 8 43.1 14.0 7.1 47.3 45.5 8.2 18.3
 10 42.7 13.8 7.2 46.3 45.0 8.2 18.5ܹ݁(1,3) 2 48.0 15.6 7.0 51.5 50.1 7.6 15.7
 4 44.3 14.5 6.9 49.2 47.9 7.8 17.2
 6 43.3 14.3 7.0 47.7 45.7 8.2 18.0
 8 42.5 13.7 7.2 46.4 45.1 8.2 18.5
 10 41.7 13.2 7.3 45.3 44.7 8.2 19.0ܹ݁(1.2,3) 2 48.3 16.0 7.0 51.8 50.6 7.6 15.4
 4 44.3 14.5 6.9 49.1 47.5 7.9 17.3
 6 43.0 14.0 7.1 47.2 45.6 8.2 18.3
 8 41.8 13.5 7.3 45.6 44.7 8.3 18.7
 10 40.5 13.2 7.4 44.4 44.1 8.3 19.2

Source: own calculation. 

Empirical powers of the tests are presented in table 2. The visualization of the 
probability distributions used in the power study is presented in figure 3. The 
tests from the second group, that is the ܸ∗ and ܦܣ௨ଶ∗  tests, have high empirical 
powers, that on average amount to 97% for the first test and 98% for the second 
test. However, it has to be reminded, that these tests are too liberal. The ܦܣ∗ 
and ܦܣ௨∗  tests from the third group are much more realistic. While the average 
rate of rejection of the false null hypothesis for the first test is 64%, it is only 30% 
for the second test. The results for the ܦܣ௨∗  are very irregular. For the distribu-
tions with the fast decaying tails, that is for the normal and power-exponential 
ones, the average powers are lower than 3%. 

The powers of the ܸ∗, ܦܣ௨ଶ∗  and ܦܣ∗ tests show common behavior with re-
spect to the decaying rates of the tails. With regard to the distributions with the 
fast decaying tails, that is the normal and power-exponential distributions, the 
empirical powers of the tests decrease with the growing thickness of the tail. In 
case of the distributions with thicker tails, that is the t-distribution and Weibull 
distribution, the relation is opposite, the powers of the tests increase with the 
growing thickness of the tail. Summarizing, the powers of the tests are higher 
for extreme tails, that are decaying exponentially or powerly. In case of the 
distributions with semi-heavy tails, the considered tests had more problems 
with recognizing the actual distribution. It is also worth noting that the powers 
of the ܸ∗, ܦܣ௨ଶ∗  and ܦܣ∗ tests were increasing with the growth of the truncation 
point. 
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Table 2. EMPIRICAL POWERS OF THE TESTS (AS PERCENTAGES, ߙ = 5%) 

Null hypothesis Actual 
distribution ܦܣ ∗ܦܣ ∗ܸ ܪ௨∗ ∗௨ଶܦܣ   ܰ(0,3.5) ܰ(0,3) 2 100.0 71.3 0.4 99.9

 4 100.0 81.0 0.5 100.0
 6 100.0 87.0 0.5 100.0
 8 100.0 89.5 0.4 100.0
 10 100.0 90.5 0.5 100.0ܰ(0,4.5) ܰ(0,4) 2 99.2 35.1 1.2 98.6
 4 99.7 45.5 1.2 98.8
 6 99.7 53.2 1.2 99.5
 8 99.8 59.8 1.2 99.6
 10 99.9 64.7 1.2 99.7ܰ(0,5.5) ܰ(0,5) 2 93.4 15.6 1.8 91.4
 4 95.8 19.8 1.7 94.8
 6 97.1 23.6 1.8 96.7
 8 98.3 27.9 1.8 97.4
100.0 100.0 100.0 100.0 2 (1)ݐ (2)ݐ97.6 1.8 32.7 98.5 10 
 4 100.0 100.0 100.0 100.0
 6 100.0 100.0 100.0 100.0
 8 100.0 100.0 100.0 100.0
99.6 48.8 83.6 99.3 2 (3)ݐ (4)ݐ100.0 100.0 100.0 100.0 10 
 4 100.0 93.4 53.1 100.0
 6 100.0 95.3 54.2 100.0
 8 100.0 96.0 55.7 100.0
83.9 24.3 28.4 56.0 2 (5)ݐ (6)ݐ100.0 55.9 96.2 100.0 10 
 4 90.4 44.9 27.5 95.1
 6 95.4 52.2 28.9 97.8
 8 97.4 56.1 29.5 98.4
;0,3.5)ܲܧ98.5 29.9 57.7 98.0 10  100.0 1.4 63.4 99.9 2 (0,3,1.5)ܲܧ (1.5
 4 100.0 69.7 1.4 100.0
 6 100.0 73.8 1.5 100.0
 8 100.0 74.0 1.3 100.0
98.3 2.1 26.4 97.7 2 (0,4,1.5)ܲܧ (0,4.5,1.5)ܲܧ99.9 1.3 74.4 100.0 10 
 4 98.1 32.7 2.2 98.9
 6 98.2 36.4 2.1 99.3
 8 98.3 38.4 2.0 99.2
91.0 2.8 14.4 91.3 2 (0,5,1.5)ܲܧ (0,5.5,1.5)ܲܧ99.3 2.0 38.9 98.2 10 
 4 91.9 16.8 2.6 94.1
 6 92.0 19.0 2.8 95.6
 8 91.5 19.9 2.7 96.1
 10 91.5 20.0 2.4 95.9
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Table 2. EMPIRICAL POWERS OF THE TESTS (AS PERCENTAGES, ߙ = 5%) (cont.) 

Null hypothesis Actual 
distribution ܦܣ ∗ܦܣ ∗ܸ ܪ௨∗ ∗௨ଶܦܣ   ܹ݁(0.9,3) ܹ݁(0.8,3) 2 95.8 80.3 58.5 99.7

 4 99.9 90.4 64.8 100.0

 6 99.9 94.9 69.3 100.0

 8 100.0 97.2 72.5 100.0

 10 100.0 98.3 75.9 100.0ܹ݁(1.1,3) ܹ݁(1,3) 2 82.9 58.4 43.0 98.2

 4 96.9 74.2 49.3 99.8

 6 99.8 84.7 55.3 100.0

 8 99.8 92.0 59.3 100.0

 10 99.9 95.2 62.3 100.0ܹ݁(1.3,3) ܹ݁(1.2,3) 2 67.4 43.6 35.2 93.1

 4 90.7 60.1 39.8 99.2

 6 97.8 73.7 43.9 99.9

 8 99.8 82.9 49.0 100.0

 10 99.8 89.5 53.4 100.0

Source: own calculation. 

 
Due to the time-consuming procedures, the p-values were calculated on 

the basis of ܰ = 100 Monte Carlo samples, the default value of ܰ in the trun-
cgof package. To justify the obtained results, the randomness of the p-values 
was studied for the selected cases (similar analysis was considered in 
Smaga, 2017). The tests chosen to the power study were applied 100 times to 
a single data set, with different values of ܰ. The study was performed for the 
actual distribution ܰ(0,4), under the true and false null hypothesis. Figure 4 
presents the results. The median of each analysed case does not vary con-
siderably between different numbers of ܰ. The variance of p-values decreas-
es with the increase of ܰ, therefore, in the unconvincing cases, it is recom-
mended to repeat the tests with a higher value of ܰ. This may at least slightly 
improve the results, for example, the empirical sizes of the tests ܦܣ ,∗ܦܣଶ∗, ܵܭ∗, ܸ∗, ܹଶ∗, ܦܣ௨∗  and ܦܣ௨ଶ∗  were equal to 7.5, 42.8, 39.4, 13.6, 44.8, 7.6 and 
13 respectively for ܰ = 1000, actual distribution ܰ(0,4) and ܪ = 6, while 
for ܰ = 100, they were equal to 6.9, 47.5, 44.2, 14.7, 49.2, 8 and 17.2 respec-
tively. 

All the calculations were done in R statistical environment (R Core Team, 
2017). Except the R package truncgof (Wolter, 2012), the R packages normalp 
(Mineo, 2014) and doParallel (Calaway et al., 2017) were also used, since they 
deal with power-exponential distributions and parallel computing, respectively. 
When writing the code in R program, many tips and hints were drawn from the 
handbook written by Górecki (2011). 
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Figure 4. Boxplots for the randomness of the p-values  

 

For each boxplot the testing procedure was repeated 100 times. For a-d the null, and for e-h the alternative hy-
pothesis was true. The p-values determined on the basis of ࡺ =  for a-h were as follows: 0.99010, 0.80513, 
0.49084, 0.76880, 0.00053, 0.04464, 0.48980, 0.00680. 

Source: own calculation. 
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4. CONCLUSIONS 
 

The aim of this paper was to present the results of the simulation studies, that 
were evaluating the finite sample behavior of the tests for truncated distributions 
introduced in Chernobai et al. (2015) and implemented in the R package trun-
cgof (Wolter, 2012). The tests were performed with default values of parameters 
used in the truncgof package. The research was based on artificial data gener-
ated from the distributions that are often describing the tails of asset returns. The 
study was conducted for different tail thickness and for changing truncation 
point. In the cases considered in the article, the ܵܭ∗, ܹଶ∗, ܦܣଶ∗, ܸ∗ and ܦܣ௨ଶ∗  
tests did not maintain the preassigned type I error level. The remaining two 
tests, ܦܣ∗ and ܦܣ௨∗ , obtained reasonable rejection rates for the true null hy-
pothesis. The power of the ܦܣ∗ test was much higher than the power of the ܦܣ௨∗  
test. While the average rate of rejection of the false null hypothesis for the first 
test is 64%, it is only 30% for the second test. It was also noticed, that the power 
of ܦܣ∗ and ܦܣ௨∗  tests is higher for extreme tails and it grows with the truncation 
point. On the basis of the obtained results, it is recommended to assess the 
behavior of the tests analyzed in this article, in terms of the sample size, theoret-
ical distribution and truncation point, before every application. In the unconvinc-
ing cases (e.g., when the p-value is close to the significance level), it is suggest-
ed to use greater number ܰ of Monte Carlo samples to estimate the p-values of 
the tests than ܰ ൌ 100, which is the default value of ܰ in the truncgof package. 
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PORÓWNANIE TESTÓW ZGODNOŚCI DLA ROZKŁADÓW UCIĘTYCH 

Streszczenie 

Celem artykułu jest empiryczne zbadanie mocy i rozmiaru siedmiu testów 
zgodności, zaprezentowanych w pracy Chernobai i inni (2015), przeznaczonych 
dla rozkładów lewostronnie uciętych. Badania symulacyjne oparto na danych, 
wygenerowanych z rozkładów, które były w przeszłości lub są obecnie sto-
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sowane do opisu ogonów rozkładów stóp zwrotu. Badania przeprowadzono dla 
różnych grubości ogonów rozkładów oraz zmieniających się poziomów ucięcia. 
Wyniki symulacji wskazują na istnienie znacznych różnic pomiędzy poszczegól-
nymi procedurami testowymi. Ponadto otrzymanie zadowalających wyników 
w przypadku niektórych procedur wymaga dość dużej liczby obserwacji. 

Słowa kluczowe: moc testu, program R, rozkłady ucięte, rozmiar testu, testy 
zgodności 

 
COMPARISON OF THE GOODNESS-OF-FIT TESTS FOR TRUNCATED 

DISTRIBUTIONS 

Abstract 

The aim of this paper is to investigate the finite sample behavior of seven 
goodness-of-fit tests for left truncated distributions of Chernobai et al. (2015) in 
terms of size and power. Simulation experiments are based on artificial data 
generated from the distributions that were used in the past or are used nowa-
days to describe the tails of asset returns. The study was conducted for different 
tail thickness and for changing truncation point. Simulation results indicate that 
the testing procedures do not work equally well under finite samples, and some 
of them require quite large number of observations to perform satisfactorily. 

Keywords: goodness of fit tests, power of test, R program, size of test, trun-
cated distributions 
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Nonparametric versus parametric reasoning based 
on two-way and three-way contingency tables  

1. INTRODUCTION

The analysis of contingency tables (CTs) is one of the most common tasks 
performed by statisticians. CTs display the frequency distribution of two (two- 
-way CTs), three (three-way CTs) or more (multi-way CTs) categorical variables.
The information about categorical data can be found e.g. in Bishop et al. (1975),
Agresti (2002), Van Belle et al. (2014). Information presented as CTs features in
a wide variety of areas such as the social sciences (Wickens, 1969), genetics
(El Galta et al., 2008; Dickhaus et al., 2012), demography (Cung, 2013) and
psychology (Iossifova et al., 2013). Basic methods of testing for dependency in
CTs in details is described e.g. in Steinle et al. (2006), Bock (2003), Kaski et
al. (2005), Allison, Liker (1982). Other examples of applications may be found in
Ilyas et al. (2004), Oates, Cohen (1996), Schrepp (2003), Haas et al. (2007).

One can recognize two general cases in which CTs can be useful. This dis-
tinction between the cases is made with respect to the tasks which CTs are used 
for. 

Case A. Dependency is unwanted. The general population is sought to be in 
its normal state or be under control when levels of feature ܺ are independent of 
levels of feature ܻ. Revealing dependency means revealing abnormality of 
members of the general population. If so, a large scale and very costly actions 
have to be obligatorily initiated. That is why a decision-maker tries to avoid false 
alarm. This case is typical, for instance, in security guarding. A classic statistical 
way of reasoning is tailored to case A. Please notice that the main hypothesis, 
commonly denoted by ܪ, states that: ܺ and ܻ are independent. Moreover, ܪ is 
guarded against rejection by setting significance level at 5% or less.  

Case B. Dependency is wanted. The state of the general population is as-
sessed upon feature ܺ. Unfortunately, levels of feature ܺ are difficult to be de-
termined e.g. determination is risky, costly or time consuming. In contrast, levels 
of another feature ܻ are easy to be determined. Assessors are concerned with 
finding out whether there is a tie between ܺ and ܻ. In other words, whether ܺ 

1 The Pomeranian University, Institute of Mathematics, 6–7 Kozietulskiego St., 76–200 Słupsk, Po-
land, e-mail: piotr.sulewski@apsl.edu.pl. 
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and ܻ are dependent or independent. Assessors use ଵܻ, . . . , ܻ levels as sensible 
indicators of ଵܺ, . . . , ܺ௪ levels. Case B is typical in diagnostics, both medical and 
technical. In case B another way of statistical reasoning is needed, different from 
the classic way. 

Conservativeness of the classic statistical way of reasoning often obstructs 
progress in numerous situations where rejecting ܪ means making a step 
ahead. This is a strong motivation for making a turnaround in statistical reason-
ing. In this new statistical reasoning there is no null hypothesis. In contrast to the 
classic way, there is a set of competing hypotheses. Moreover, the testing pro-
cedure warrants equality of all the alternatives when the test begins. The former 
null hypothesis is no longer the main one, but exists among the other ones of 
equal importance. Particular hypotheses relate to scenarios under which particu-
lar CTs are created. Details are presented in section 7. There are two reasons 
for which this likelihood based reasoning is developed and put forward: 
a) Undoubtedly, CT-based classic statistical reasoning is the nonparametric 

reasoning. It is commonly known that parametric statistical reasoning, if ap-
plicable, is much more sensitive to untruthfulness of ܪ than nonparametric 
reasoning. In this paper we propose a parametric reasoning. Particular sce-
narios are parameterized with the probability flow parameter (PFP).  

b) Let us again retrace a way of the classic thinking. A value of the test statis-
tics is smaller than the appropriate critical value results in failing to reject ܪ. In case A the decision maker is comfortable about independence. 
A value of the test statistics is no smaller than the appropriately determined 
critical value results in rejecting ܪ. In case B the decision maker is com-
fortable about dependence because there is no word said what the reason 
of rejecting ܪ is. The most likely scenario is selected whereas reasons to 
reject ܪ or not are embedded in scenarios. One can say that the method 
put forward in this paper offers a transition from ”unfathomable” to ”fathom-
able” reasons. 

Nonparametric and parametric reasoning based on 2 × 2 CT is presented in 
(Sulewski, 2018b), therefore this paper is devoted to bigger tables, e.g. 2 × 3, 2 × 4, 3 × 3, 3 × 4, 4 × 4, 2 × 2 × 2, 3 × 2 × 2 ones.  

This paper is organized as follows. Variants of presentation of CT are de-
scribed in section 2. CT coming into being are presented in section 3. Statistic 
tests including the power divergence tests and the |߯| test are defined in section 
4. Section 5 is devoted to measures of untruthfulness of H0 including the meas-
ure that is defined by means of an absolute value. In section 6 maximum likeli-
hood method is applied to estimate the PFP. Section 7 is devoted to instructions 
how to generate two-way and three-way CTs. Section 8 presents numerical ex-
amples and section 9 presents closing remarks.  

Monte Carlo simulation is performed in Visual Basic for Applications embed-
ded in Microsoft Excel 2016. 
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2. VARIANTS OF PRESENTATION OF CT 
 

This section is devoted to the ݓ × ݇ ×  CT. If  = 1, then we obviously have ݓ × ݇ CT.  
Let ܺ, ܻ, ܼ be three features of the same object, respectively, have levels ଵܺ, . . . , ܺ௪, ଵܻ, . . . , ܻ, ܼଵ, . . . , ܼ. Testing these three features for independence 

with an appropriately arranged CT is probably one of the most common statisti-
cians’ tasks. At the moment one can distinct between four variants of presenta-
tion of CTs. It is because each variant is intended for a different purpose. Below 
details of particular variants are given: 
― TP Variant (theoretical probabilities). Cells contain probabilities ௧ intrin-

sic to the phenomenon being investigated (see table 1). The exact values 
of these probabilities are unknown to the investigator. This variant is intro-
duced a little bit in advance since CTs will be simulated with the Monte 
Carlo method in further sections of this paper. And just then CT variant 
filled with probabilities arbitrarily set by Monte Carlo experimenter will be 
applied. 

― TC Variant (theoretical counts). Cells contain theoretical expected counts ݊௧ =  ௧. These counts are theoretical in this sense that they result from݊
TP variant. 

― EP Variant (empirical probabilities). Cells that result from EC variant and 
contain estimates ௧∗ = ݊௧∗ /݊ of the unknown content of TP. 

― EC Variant (experimental counts). Cells contain ݊௧∗  counts observed on 
a sample drawn from general population subjected to the investigation. 

 
Table 1. TP VARIANT OF THREE-WAY CT Z Zଵ ... Z୮ 

Total X	 	Y⁄  Yଵ ... Y୩ ... Yଵ ... Y୩ Yଵ ଵܲଵଵ ... ଵܲଵ ... ଵܲଵ ... ଵܲ ଵܲ•• 
... ... ... ... ... ... ... ... ... X୵ ௪ܲଵଵ ... ௪ܲ୩ଵ ... ௪ܲଵ ... ௪ܲ ௪ܲ•• 

Total •ܲଵଵ ... •ܲଵ ... •ܲଵ ... •ܲ 1 

 
3. ON HOW CT COMES INTO BEING 

 
One can treat CTs as a mathematical expression of a certain phenomenon we 

deal with. This formulation suggests that there is an internal mechanism in this 
phenomenon that determines probabilities of particular ܺ, ܻ or ܺ, ܻ, ܼ combina-
tions and ascribes these probabilities to the cells of the table. Below are “pro-
genitors” of all the ݓ × ݇ CTs  
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 ܶ = 1/(݇ݓ) ⋯ ⋮(݇ݓ)/1 ⋯ (݇ݓ)/1⋮ ⋯ ൩ (1)(݇ݓ)/1

 
and all the ݓ × ݇ ×  CTs 
 
 ܹ = 1/(݇ݓ) ⋯ ⋮	(݇ݓ)/1 ⋮ (݇ݓ)/1⋮ ⋯ (݇ݓ)/1 			⋯ (݇ݓ)/1 ⋯⋮ ⋮ ⋮⋯ (݇ݓ)/1 ൩ (2)(݇ݓ)/1⋮(݇ݓ)/1				⋯

 
A variety of tables may be generated when portions of PFP ܽ flow from ”ma-

ternal” cells of (1) or (2) to other cells. Obviously, the total probability always 
equals 1. In this paper twenty eight scenarios that seem fundamental are devel-
oped (tables 2–3). These scenarios are created based on scenarios for the 2 × 2 CT that seem fundamental and describe different levels of dependence 
(Sulewski, 2018b). 

 
Table 2. THE CONTENTS OF ݓ × ݇ CTs RESULTING FROM SCENARIOS IN QUESTION 

Table Scenario Content 

2 × 3 

I ଵଵ = 1/6 − ܽ, ଵଶ = ଵଷ = ଶଵ = ଶଶ = 1/6, ଶଷ = 1/6 + ܽ 

II ଵଵ = ଵଶ = 1/6 − ܽ, ଵଷ = ଶଵ = 1/6, ଶଶ = ଶଷ = 1/6 + ܽ 

III ଵଵ = ଵଶ = 1/6 − ܽ, ଵଷ = ଶଷ = 1/6, ଶଵ = ଶଶ = 1/6 + ܽ 

IV ଵଵ = ଶଷ = 1/6 − ܽ, ଵଶ = ଶଶ = 1/6, ଵଷ = ଷଵ = 1/6 + ܽ 

2 × 4 

V ଵଵ = 1/8 − ܽ, ଵଶ = ଵଷ = ଵସ = ଶଵ = ଶଶ = ଶଷ = 1/8, ଶସ = 1/8 + ܽ 

VI ଵଵ = ଵଶ = ଵଷ = 1/8 − ܽ, ଵସ = ଶଵ = 1/8, ଶଶ = ଶଷ	 = ଶସ	 = 1/8 + ܽ 

VII ଵଵ = 1/8 − ܽ, ଵଶ = ଵଷ = ଵସ = ଶଶ = ଶଷ = ଶସ = 1/8, ଶଵ = 1/8 + ܽ 

VIII ଵଵ = ଵଶ = 1/8 − ܽ, ଵଷ = ଵସ = ଶଷ = ଶସ = 1/8, ଶଵ = ଶଶ = 1/8 + ܽ 

3 × 3 

IX ଵଵ = 1/9 − ܽ, ଵଶ = ଵଷ = ଶଵ = ଶଶ = ଶଷ = ଷଵ = ଷଶ = 1/9, ଷଷ = 1/9 + ܽ 

X ଵଵ = ଵଶ = 1/9 − ܽ, ଵଷ = ଶଵ = ଶଶ = ଶଷ = ଷଷ = 1/9, ଷଵ = ଷଶ = 1/9 + ܽ 

XI ଵଵ = ଷଷ = 1/9 − ܽ, ଵଶ = ଶଵ = ଶଶ = ଶଷ = ଷଶ = 1/9, ଵଷ = ଷଵ = 1/9 + ܽ 

XII ଵଵ = ଶଵ = ଷଷ = 1/9 − ܽ, ଵଶ = ଶଶ = ଷଶ = 1/9, ଵଷ = ଶଷ = ଷଵ = 1/9 + ܽ 

3 × 4 

XIII 
ଵଵ = 1/12 − ܽ, ଵଶ = ଵଷ = ଵସ = ଶଵ = ଶଶ = ଶଷ = ଶସ = ଷଵ = ଷଶ = ଷଷ == 1/12, ଷସ = 1/12 + ܽ 

XIV 
ଵଵ = ଵଶ = 1/12 − ܽ, ଵଷ = ଵସ = ଶଵ = ଶଶ = ଶଷ = ଶସ = ଷଷ = ଷସ == 1/12, ଷଵ = ଷଶ = 1/12 + ܽ 

XV 
ଵଵ = ଵଶ = 1/12 − ܽ, ଶଵ = ଶଶ = ଶଷ = ଶସ = ଷଵ = ଷଶ = ଷଷ = ଷସ == 1/12, ଵଷ = ଵସ = 1/12 + ܽ 

XVI ଵଵ = ଵଶ = ଷଷ = ଷସ = 1/12 − ܽ, ଶଵ = ଶଶ = ଶଷ = ଶସ = 1/12, ଵଷ =	= ଵସ = ଷଵ = ଷଶ = 1/12 + ܽ 
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Table 2. THE CONTENTS OF ݓ × ݇ CTs RESULTING FROM SCENARIOS IN QUESTION (cont.) 

Table Scenario Content 

4 × 4 

XVII ଵଵ = ଵଶ = ଵଷ = 1/16 − ܽ, ଵସ = ଶଵ = ଶଶ = ଶଷ = ଶସ = ଷଵ = ଷଶ = ଷଷ =	= ଷସ = ସସ = 1/16, ସଵ = ସଶ = ସଷ = 1/16 + ܽ 

XVIII ଵଵ = ଵଶ = 1/16 − ܽ, ଵଷ = ଵସ = ଶଵ = ଶଶ = ଶଷ = ଶସ = ଷଵ = ଷଶ = ଷଷ =	= ଷସ = ସଵ = ସଶ = 1/16, ସଷ = ସସ = 1/16 + ܽ 

XIX ଵଵ = ଵଶ = ଵଷ = ଶଵ = ଶଶ = ଶଷ = 1/16 − ܽ, ଵସ = ଶସ = ଶଵ =	= ଷଵ = ସଵ == 1/16, ଷଶ = ଷଷ = ଷସ = ସଶ = ସଷ = ସସ = 1/16 + ܽ 

XX ଵଵ = ଵଶ = ସଷ = ସସ = 1/16 − ܽ, ଶଵ = ଶଶ = ଶଷ = ଶସ = ଷଵ ଷଶ	= = ଷଷ = ଷସ = 1/16, ଵଷ = ଵସ = ସଵ = ସଶ = 1/16 + ܽ 

Source: own elaboration. 

 
Table 3. THE CONTENTS OF ݓ × ݇ ×  CTs RESULTING FROM SCENARIOS IN QUESTION 

Table Scenario Content 

2 × 2 × 2 

XXI ଵଵଵ = ଵଵଶ = 1/8 − ܽ, ଵଶଵ = ଵଶଶ = ଶଵଵ = ଶଵଶ = 1/8, ଶଶଵ = ଶଶଶ = 1/8 + ܽ 

XXII ଵଵଵ = ଵଶଵ = ଵଵଶ = 1/8 − ܽ, ଵଶଶ = ଶଵଵ = 1/8, ଶଶଵ = ଶଵଶ = ଶଶଶ = 1/8 + ܽ 

XXIII ଵଵଵ = 1/8 − ܽ, ଵଶଵ = ଵଵଶ = ଵଶଶ = ଶଶଵ = ଶଵଶ = ଶଶଶ = 1/8, ଶଵଵ = 1/8 + ܽ 

XXIV ଵଵଵ = ଵଵଶ = 1/8 − ܽ, ଵଶଵ = ଵଶଶ = ଶଶଵ = ଶଶଶ = 1/8, ଶଵଵ = ଶଵଶ = 1/8 + ܽ 

3 × 2 × 2 

XXV 
ଵଵଵ = ଵଵଶ = 1/12 − ܽ, ଵଶଵ = ଵଶଶ = ଶଵଵ = ଶଶଵ = ଶଵଶ = ଶଶଶ = ଷଵଵ = ଷଵଶ == 1/12, ଷଶଵ = ଷଶଶ = 1/12 + ܽ 

XXVI ଵଵଵ = ଵଵଶ = 1/12 − ܽ, ଵଶଵ = ଶଵଵ = ଶଶଵ = ଶଵଶ = ଶଶଶ = ଷଵଵ =	= ଷଵଶ = ଷଶଶ = 1/12, ଵଶଶ = ଷଶଵ = 1/12 + ܽ 

XXVII ଵଵଵ = ଵଵଶ = ଶଵଵ = 1/12 − ܽ, ଶଵଶ = ଶଶଶ = ଷଵଵ = ଷଶଵ =	= ଷଵଶ = ଷଶଶ == 1/12, ଵଶଵ = ଵଶଶ = ଶଶଵ = 1/12 + ܽ 

XXVIII ଵଵଵ = ଵଵଶ = ଷଶଵ = ଷଶଶ = 1/12 − ܽ, ଶଵଵ = ଶଶଵ = ଶଵଶ =	= ଶଶଶ = 1/12, ଵଶଵ = ଵଶଶ = ଷଵଵ = ଷଵଶ = 1/12 + ܽ 

Source: own elaboration. 

 
In all the above scenarios the PFP ܽ takes values in ቂ0, ଵ௪ቃ or ቂ0, ଵ௪ቃ. The 

scenarios are selected in such a way that they correspond to different levels of 
dependence expressed by means of an appropriate measure of untruthfulness 
of ܪ (MoU). The MoU takes values on interval ሾ0,1ሿ. A simulation study is car-
ried out for MoU values no bigger than 2/3. It is obvious that the detection of 
a strong dependence is very simple. You can find more information about the 
MoU in section 5. 

Obviously, scenarios do not cover all the cases. They may be locally mutated 
by reversing rows or columns to better fit the analyzed data. These are simple 
equal-portion scenarios. In the scenarios you can use a part of PFP, e.g. ܽ/2, ܽ/3,…. Surely, real scenarios can be more or less similar to these above. This is 
typical in relations between theory and real life. With the current availability of 
computers, the statistician can afford situations that interest him and instantly 
repeat such simulations. All examples presented here have a very precise algo-
rithmic description in a form of a step list. 
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The researches can be generalized by introducing several PFPs. This, how-
ever, causes a significant deterioration in the properties of the parameter estima-
tors. The Weibull distribution has a simple analytical form. For its generalization, 
the Generalized Gamma Distribution (URG) can be considered. Due to big prob-
lems with estimating URG parameters the author does not know any practical 
applications of URG to describe the reliability results of technical objects. You 
can always add more parameters to the model, however, this might worsen their 
estimation. 

 
4. INDEPENDENCE TESTS 

 
4.1. Two-way contingency table 

 
Features ܺ, ܻ are independent what means that ܪ is true, if  = • •(݅, ݆ = 1,2) for each pair of ݅, ݆. The alternative hypothesis denoted ܪଵ is such 

one that negates ܪ. Let ݁ be the expected counts  

 
 ݁ = ݊•݊•݊ = ݅)••݊ = 1,… ;ݓ, ݆ = 1,… , ݇). (3)

 
The expected counts ݁ have the same one-way marginal values as the ob-

served table ݊ (Gokhale, Kullback, 1978). 
Statistical science has been enriched with many other statistics intended for 

research on test independency. Cressie, Read (1984) propose the power diver-
gence statistics (PDS). The PDS for ݓ × ݇ CTs is given by  

 ܲଶ = ߣ)ߣ2 + 1)݊∗
ୀଵ

௪
ୀଵ ቆ݊∗݁∗ ቇఒ − 1൩ = 

(4)= ߣ)ߣ2݊ + 1)∗ ቆ ∗•∗ ∗• ቇఒ − 1൩
ୀଵ

௪
ୀଵ − ∞ < ߣ < ∞, 

 
where ݁ values are given by (3). Equation (4) always takes positive values 
and is defined as a limit of ܲଶ at −1 and 0. ܲଶ contains a very rich class of test 
statistics, for example: the ߯ଶ statistics (ߣ = 1), the G2 statistics (the limit as ߣ 
goes to 0), the Freeman-Tukey statistics (ߣ = −0.5), the modified G2 statistics 
(the limit as ߣ goes to −1), the Neyman modified ߯ଶ statistics (ߣ = −2) and the 
Cressie-Read statistics (ߣ = 2/3). If H0 is true, statistics (4), for large ݊ (i.e. 
asymptotically), follows the chi-square distribution with (ݓ − 1)(݇ − 1) degrees 
of freedom.  
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The following PDS are selected to Monte Carlo study: the ߯ଶ statistics (Pear-
son, 1900), the Freeman-Tukey FT statistics (Freeman, Tukey, 1950), the Cres-
sie-Read CR statistics (Cressie, Read, 1984): 

 
 ߯ଶ =൫݊∗ − ݁൯ଶ݁

ୀଵ
௪
ୀଵ , (5)

 
ܶܨ  = 4ቌඨ݊∗ − ට݁∗ ቍଶ ,

ୀଵ
௪
ୀଵ  (6)

 
ܴܥ  = 95݊∗

ୀଵ ቆ݊∗݁∗ ቇଶ/ଷ − 1൩௪
ୀଵ . (7)

 
The ܩଶ statistics (Sokal, Rohlf, 2012), the modified ܩଶ statistics (Kullback, 

1959) and the Neyman modified ߯ଶ statistics (Neyman, 1949) have not been 
subjects in the Monte Carlo study because they are applicable only in a case 
where all ݊	(݅ = 1,… ;ݓ, ݆ = 1,… , ݇) counts are not equal to zero. 

The square used in the numerator of ߯ଶ statistics (5) makes that large differ-
ences between expected and theoretical counts even bigger and the small dif-
ferences even smaller. Another aim of the use of the square is to avoid that the 
differences are mutually exclusive. For this purpose one can use their absolute 
value instead of squared deviations. The |߯| statistics is selected to Monte Carlo 
study, too. It is an authorial modification of ߯ଶ statistics and it has the form 
(Sulewski, 2013) 

 
 |߯| =ห݊∗ − ݁∗ ห݁∗

ୀଵ
௪
ୀଵ =ห∗ − ∗• ∗• ห•∗ ∗•

ୀଵ
௪
ୀଵ , (8)

 
where ݊∗  are experimental counts, ݁∗  are expected counts and ∗  are empirical 
probabilities. It is shown in (Sulewski, 2016) that |߯| test is more powerful than 
tests (5)–(7).  
 
4.2. Three-way contingency table 

 
In this paper the research has been limited only to complete independence. 

Features ܺ, ܻ, ܼ are completely independent from one another, and ܪ is true, if 
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 ܲ௧ = ܲ•• •ܲ• •ܲ•௧ (9)

 
for each ݅ = 1,… ;ݓ, ݆ = 1,… , ݇; ݐ = 1,… , -ଵ neܪ The alternative hypothesis .
gates ܪ.  

Let ݁௧ be the expected counts under complete independence of ݅, ݆,  ݐ
 

 ݁௧ = ݊••݊••݊••௧݊ଶ = ݅)௧••••••݊ = 1,… ;ݓ, ݆ = 1,… , ݇; ݐ = 1,… , (10) .(

 
The expected counts ݁௧ under complete independence of ݅, ݆,  have the ݐ

same one-way 
marginal values as the observed table ݊௧ (Gokhale, Kullback, 1978) 
To study the complete independence of the features ܺ, ܻ, ܼ we use the statis-

tics that are extensions of those for two-way CTs (Pardo, 1996) 

 
 ߯ଷଶ =൫݊௧∗ − ݁௧∗ ൯ଶ݁௧∗

௧ୀଵ

ୀଵ

௪
ୀଵ , (11)

ܨ  ଷܶ = 4൬ට݊௧∗ − ට݁௧∗ ൰ଶ
௧ୀଵ


ୀଵ

௪
ୀଵ , (12)

ଷܴܥ  = 95݊௧∗
௧ୀଵ


ୀଵ

௪
ୀଵ ቆ݊௧∗݁௧∗ ቇଶ/ଷ − 1൩. (13)

 
Statistics (11)–(13) for CT, when ܪ is true, asymptotically follow the chi-

square distribution with ݇ݓ − ݓ) + ݇ + ( + 2 degrees of freedom. Statistics  

 
ଷଶܩ  = 2݊௧∗ 1n

௧ୀଵ

ୀଵ

௪
ୀଵ ቆ݊௧∗݁௧∗ ቇ , ଷܰ = ൫݊௧∗ − ݁௧∗ ൯ଶ݊௧∗ ,

௧ୀଵ

ୀଵ

௪
ୀଵ 	

ଷܮܭ = 2݁௧∗
௧ୀଵ 1n

ୀଵ
௪
ୀଵ ቆ݁௧∗݊௧∗ ቇ 

 
also belong to the PDS. However, these statistics have not been applied in 
the Monte Carlo study, because they do not take into account the condition ݊௧∗ = 0. 

The |߯ଷ| statistics is selected to Monte Carlo study, too. It is an authorial 
modification of ߯ଷଶ statistics and it has the form (Sulewski, 2018a) 
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 |߯ଷ| =ห݊௧∗ − ݁௧∗ ห݁௧∗

௧ୀଵ

ୀଵ

௪
ୀଵ , (14)

 
where ݊௧∗  are experimental counts and ݁௧∗  are expected counts. It is shown in 
(Sulewski, 2018a) that |߯ଷ| test is more powerful than tests (11)–(13).  

 
5. MEASURES OF UNTRUTHFULNESS OF H0 

 
5.1. Two-way contingency table 

 
When the equality  =   is not true and an appropriateܪ , is not fulfilled••

measure of untruthfulness of ܪ (MoUH) is needed. There are many different 
measures in literature, e.g.: the Pearson’s , the Tschuprow’s ܶ, the Cramer’s ܸ, 
the corrected contingency ܿ, the Goodman and Kruskal’s .  

In this paper we use a MoUH which is given by (Sulewski, 2016):  

 
ܷܯ  = 1݊ቤ݊∗ − ݊•.∗ ⋅ ݊•∗݊ ቤ

ୀଵ
௪
ୀଵ =ห∗ − ∗• ⋅ ∗• ห

ୀଵ
௪
ୀଵ . (15)

 
The ܷܯ takes values in interval 〈0,1〉. This measure, doubtlessly, springs 

from the essence of ܪ and has a very simple form. The ܷܯ formulas and the 
maximal ܷܯ values (the minimal ܷܯ values are equal to zero) under scenari-
os I-XX are presented in table 4. The ܷܯ is a function of the PFP ܽ. Owing to 
this the ܷܯ values are very easy to calculate. 

 
Table 4. THE ܷܯ UNDER SCENARIOS I-XX FOR A TWO-WAY CT 

Table Scenario ܷܯ ܷܯ௫   Table Scenario ܷܯ ܷܯ௫ 2 × 3 I 4ܽ/3 0.2222 2 × 4 V 2ܽ 0.25 

II * 0.3333 VI ** 0.3125 

III 8ܽ/3 0.4444 VII 3ܽ 0.375 

IV 4ܽ 0.6667 VIII 4ܽ 0.5 3 × 3 IX 2ܽଶ + 2ܽ 0.2469 3 × 4 XIII 8ܽ/3 0.2222 

X 8ܽ/3 0.2963 XIV 4ܽ 0.3333 

XI 4ܽ 0.4444 XV 16ܽ/3 0.4444 

XII 16ܽ/3 0.5926 XVI 8ܽ 0.6667 
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Table 4. THE ܷܯ UNDER SCENARIOS I-XX FOR A TWO-WAY CT (cont.) 

Table Scenario ܷܯ ܷܯ௫   Table Scenario ܷܯ ܷܯ௫ 4 × 4 XVII 3ܽ 0.1875  

XVIII 4ܽ 0.25 

XIX ∗∗∗ 0.3125 

XX 8ܽ 0.5 

0)ܫ	4ܽ/3 *  ܽ < 0.1), 8ܽଶ + 0.1)ܫ	2ܽ/3 < ܽ  1/6)   
0)ܫ	2ܽ **  ܽ  0.075), 12ܽଶ + 0.075)ܫ	ܽ < ܽ  0.125) 
0)ܫ	4ܽ ***  ܽ  0.0375), 48ܽଶ + 0.0375)ܫ	2ܽ < ܽ  1/16)       
Source: own elaboration. 
 

5.2. Three-way contingency table 
 
The theory devoted to MoUH for TT is not as rich as for the two-way contin-

gency table, where the Goodman—Kruskal index plays an important role 
(Goodman, Kruskal, 1954). Numeric extensions of this index for three way CT 
are: the Marcotorchino index ߬ெ (Marcotorchino, 1984), the delta index ߬ (Lom-
bardo, 2011) and the Gray—Williams index ߬ீௐ (Gray, Williams, 1975). Infor-
mation about other less popular indices can be found in (Beh, Davy, 1998; 
Harshman, 1970; Lombardo, Beh, 2010; Trucker, 1963). 

Based on the classical definition of independence of ܺ, ܻ, ܼ, the ܷܯଷ in the 
form 

 
ଷܷܯ  = 1݊ቤ݊௧∗ − ݊••∗ ݊••∗ ݊••௧∗݊ଶ ቤ

௧ୀଵ

ୀଵ

௪
ୀଵ =ห௧ − ௧ห,••••••

௧ୀଵ

ୀଵ

௪
ୀଵ  (16)

 
is put forward in (Sulewski, 2018a). The measure (16) takes the value 0 when ܪ 

is true. The higher the ܷܯଷ value, the greater the possibility of H0 falsity. More 
information about the measures ܷܯଷ, ߬ெ, ߬ and ߬ீௐ defined under some sce-
narios for three-way CT you can find in (Sulewski, 2018a).  

The ܷܯଷ as a natural measure, resulting from the definition of independ-
ence, is used in the Monte Carlo simulation. The ܷܯଷ formulas and the maxi-
mal ܷܯଷ values (the minimal ܷܯଷ values are equal to zero) under scenarios 
XXI–XXVIII are presented in table 5. The ܷܯଷ is a function of the PFP a. Owing 
to this the ܷܯଷ values are very easy to calculate. 

 
Table 5. The ܷܯଷ under scenarios XXI-XXVIII for three-way contingency tables  

Table Scenario ܷܯଷ ܷܯଷ	௫   Table Scenario ܷܯଷ ܷܯଷ	௫ 

2 × 2 × 2 

XXI 16ܽଶ 0.25   3 × 2 × 2 

XXV 8ܽ/3 0.2222 

XXII * 0.3359   XXVI ** 0.3889 

XXIII 3ܽ 0.375   XXVII 6ܽ 0.5 

XXIV 4ܽ 0.5   XXVIII 8ܽ 0.6667 
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 ଷ 0 0.025 0.0504 0.0763 0.103 0.1309 0.1601 0.1969 0.238 0.283 0.3359ܷܯ 0.125 0.1125 0.1 0.0875 0.075 0.0625 0.05 0.0375 0.025 0.0125 0 ܽ *

 ଷ 0 0.0364 0.0733 0.1108 0.1489 0.1875 0.2267 0.2664 0.3067 0.3475 0.3889ܷܯ 0.0833 0.075 0.0667 0.0583 0.05 0.0417 0.0333 0.025 0.0167 0.0083 0 ܽ **

Source: own elaboration. 
 

6. APPLYING THE MAXIMUM LIKELIHOOD METHOD 
TO ESTIMATE THE PROBABILITY FLOW PARAMETER 

 
This section is a simply attempt of replacing a nonparametric statistical infer-

ence method by the parametric one. Maximum likelihood method is applied to 
estimate the PFP. 

Let us remember that in cells of two-way CT are values ݊	(݅ = 1,… ;ݓ, ݆ =1,… , ݇), in cells of three-way CT are values ݊௧	(݅ = 1,… ;ݓ, ݆ = 1,… , ݇; ݐ =1,… ,  These values are components of the multinomial distribution. Thus the .(
multinomial distribution was taken as a groundwork of the likelihood functions. 
A family of these likelihood functions is given below. Every function from this 
family has an index. Indices assign functions to particular scenarios presented in 
section 3 of the paper.  

 
6.1. Two-way contingency table 

 
Let ݊∗  be the value of (݅, ݆) cell and ܽ is the probability flow parameter. Then 

likelihood functions under CT ݓ × ݇ have the form  
a) table 2 × 3 

 
(ܽ)ூܮ  = 1)ܥ 6⁄ − ܽ)భభ∗ (1 6⁄ + ܽ)మయ∗ (1 6⁄ )భమ∗ ାభయ∗ ାమభ∗ ାమమ∗ , (17)

 
(ܽ)ூூܮ  = 1)ܥ 6⁄ − ܽ)భభశ∗ భమ∗ (1 6⁄ + ܽ)మమ∗ ାమయ∗ (1 6⁄ )భయ∗ ାమభ∗ , (18)

 
(ܽ)ூூூܮ  = 1)ܥ 6⁄ − ܽ)భభ∗ ାభమ∗ (1 6⁄ + ܽ)మమ∗ ାమమ∗ (1 6⁄ )భయ∗ ାమయ∗ , (19)

 
(ܽ)ூܮ  = 1)ܥ 6⁄ − ܽ)భభ∗ ାమయ∗ (1 6⁄ + ܽ)భయ∗ ାమభ∗ (1 6⁄ )భమ∗ ାమమ∗ , (20)

 
b) table 2 × 4 

 
(ܽ)ܮ  = 1)ܥ 8⁄ − ܽ)భభ∗ (1 8⁄ + ܽ)మర∗ (1 8⁄ )భమ∗ ାభయ∗ ାభర∗ ାమభ∗ ାమమ∗ ାమయ∗ , (21)

 
(ܽ)ூܮ  = 1)ܥ 8⁄ − ܽ)భభ∗ ାభమ∗ ାభయ∗ (1 8⁄ + ܽ)మమ∗ ାమయ∗ ାమర∗ (1 8⁄ )భర∗ ାమభ∗ , (22)

 
(ܽ)ூூܮ  = 1)ܥ 8⁄ − ܽ)భమ∗ (1 8⁄ + ܽ)మభ∗ (1 8⁄ )ିభభ∗ ିమభ∗ , (23)

 
(ܽ)ூூூܮ  = 1)ܥ 8⁄ − ܽ)భభ∗ ାభమ∗ (1 8⁄ + ܽ)మభ∗ ାమమ∗ (1 8⁄ )భయ∗ ାభర∗ ାమయ∗ ାమర∗ , (24)
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c) table 3 × 3 
 

(ܽ)ூܮ  = 1)ܥ 9⁄ − ܽ)భభ∗ (1 9⁄ + ܽ)యయ∗ (1 9⁄ )ିభభ∗ ିయయ∗ , (25)
 

(ܽ)ܮ  = 1)ܥ 9⁄ − ܽ)భభ∗ ାభమ∗ (1 9⁄ + ܽ)యభ∗ ାయభ∗ (1 9⁄ )భయ∗ ାమభ∗ ାమమ∗ ାమయ∗ ାయయ∗ , (26)
 

(ܽ)ூܮ  = 1)ܥ 9⁄ − ܽ)భభ∗ ାయయ∗ (1 9⁄ + ܽ)భభ∗ ାయయ∗ (1 9⁄ )భమ∗ ାమభ∗ ାమమ∗ ାమయ∗ ାయమ∗ , (27)
 

(ܽ)ூூܮ  = 1)ܥ 9⁄ − ܽ)భభ∗ ାమభ∗ ାయయ∗ (1 9⁄ + ܽ)భభ∗ ାమయ∗ ାయయ∗ (1 9⁄ )భమ∗ ାమమ∗ ାయమ∗ , (28)
 

d) table 3 × 4 
 

(ܽ)ூூூܮ  = 1)ܥ 12⁄ − ܽ)భభ∗ (1 12⁄ + ܽ)యర∗ (1 12⁄ )ିభభ∗ ିయర∗ , (29)
 

(ܽ)ூܮ  = 1)ܥ 12⁄ − ܽ)భభ∗ ାభమ∗ (1 12⁄ + ܽ)యభ∗ ାయమ∗ (1 12⁄ )ିభభ∗ ିభమ∗ ିయభ∗ ିయమ∗ , (30)
 

(ܽ)ܮ  = 1)ܥ 12⁄ − ܽ)భభ∗ ାభమ∗ (1 12⁄ + ܽ)భయ∗ ାభర∗ (1 12⁄ )ିభభ∗ ିభమ∗ ିభయ∗ ିభర∗ , (31)
(ܽ)ூܮ  = 1)ܥ 12⁄ − ܽ)భభ∗ ାయయ∗ ାయర∗ (1 12⁄ + ܽ)భయ∗ ାభర∗ ାయభ∗ ାయమ∗ 	(1 12⁄ )మభ∗ ାమమ∗ ାమయ∗ ାమర∗ , (32)

 
e) table 4 × 4 

(ܽ)ூூܮ  = 1)ܥ 16⁄ − ܽ)భభ∗ ାభమ∗ ାభయ∗ (1 16⁄ + ܽ)రభ∗ ାరమ∗ ାరయ∗ 	(1 16⁄ )ିభభ∗ ିభమ∗ ିభయ∗ ିరభ∗ ିరమ∗ ିరయ∗ , (33)

(ܽ)ூூூܮ  = 1)ܥ 16⁄ − ܽ)భభ∗ ାభమ∗ (1 16⁄ + ܽ)రయ∗ ାరర∗ (1 16⁄ )ିభభ∗ ିభమ∗ ିరయ∗ ିరర∗ , (34)
(ܽ)ூܮ  = 1)ܥ 16⁄ − ܽ)భభ∗ ାభమ∗ ାభయ∗ ାమభ∗ ାమమ∗ ାమయ∗ 	(1 16⁄ + ܽ)యమ∗ ାయయ∗ ାయర∗ ାరమ∗ ାరయ∗ ାరర∗ (1 16⁄ )ିభర∗ ିమర∗ ିయభ∗ ିరభ∗ , (35)

(ܽ)ܮ  = 1)ܥ 16⁄ − ܽ)భభ∗ ାభమ∗ ାరయ∗ ାరర∗ 	(1 16⁄ + ܽ)భయ∗ ାభర∗ ାరభ∗ ାరమ∗ (1 16⁄ )మభ∗ ାమమ∗ ାమయ∗ ାమర∗ ାయభ∗ ାయమ∗ ାయయ∗ ାయర∗ , (36)

 
In formulas (17)–(36) ܥ = ݊!/∏ ∏ ݊∗ !ୀଵ௪ୀଵ . 
The logarithmic likelihood function under scenario I in CT 2 × 3 is given by 

 ݈ூ(ܽ) = 1nܮூ(ܽ) = 1n(C) + ݊ଵଵ∗ 1n(1 6 + ܽ⁄ ) + (݊ଵଶ∗ + ݊ଵଷ∗ ݊ଶଵ∗ ݊ଶଶ∗ )1n(1 6⁄ ), 
 

then 
 

 ߲݈ூ(ܽ)߲ܽଶ = ݊ଶଷ∗1 6 + ܽ⁄ − ߲݈ூ(ܽ)߲ܽ = 0 ⇒ ොܽ = ݊ଶଷ∗ − ݊ଵଵ∗6(݊ଶଷ∗ + ݊ଵଵ∗ ), 
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Let us check what kind of extremum we can found. As a result of a simple 
transformation we have 

 
 ߲݈ூ(ܽ)߲ܽଶ = ߲߲  ݊ଶଷ∗1 6 + ܽ⁄ − ݊ଵଵ∗1 6⁄ − ܽ൨ = − ݊ଶଷ∗(1 6⁄ + ܽ) − ݊ଵଵ∗(1 6⁄ − ܽ)ଶ < 0, (37)

 
for ܽ < 1/6. It means that the logarithmic likelihood function has always a maxi-
mum at ܽ = ොܽ. So, ොܽ is the maximum likelihood estimator of ܽ which is the prob-
ability flow parameter. It may be proven that inequality (37) holds for all scenari-
os considered in this paper. 

Formulas for the maximum likelihood estimator of ܽ under scenarios I-XX for 
two-way CT are given by: 

 
a) table 2 × 3 

 
 ොܽூ = ݊ଶଷ∗ − ݊ଵଵ∗6(݊ଶଷ∗ + ݊ଵଵ∗ ) , ොܽூூ = ݊ଶଶ∗ + ݊ଶଷ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )6(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଶଶ∗ + ݊ଶଷ∗ ), (38) ොܽூூூ = ݊ଶଵ∗ + ݊ଶଶ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )6(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଶଵ∗ +݊ଶଶ∗ ) , ොܽூ = ݊ଵଷ∗ + ݊ଶଵ∗ − (݊ଵଵ∗ + ݊ଶଷ∗ )6(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଶଵ∗ + ݊ଶଷ∗ ), 

 
b) table 2 × 4 

 
 ොܽ = ݊ଶସ∗ − ݊ଵଵ∗8(݊ଶସ∗ + ݊ଵଵ∗ ) , ොܽூ = ݊ଶଶ∗ + ݊ଶଷ∗ + ݊ଶସ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଵଷ∗ )8(݊ − ݊ଵସ∗ − ݊ଶଵ∗ ) , 

(39) ොܽூூ = ݊ଶଵ∗ − ݊ଵଵ∗8(݊ଵଵ∗ + ݊ଶଵ∗ ) , ොܽூூூ = ݊ଶଵ∗ + ݊ଶଶ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )8(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଶଵ∗ + ݊ଶଶ∗ ), 
 

c) table 3 × 3 
 ොܽூ = ݊ଷଷ∗ − ݊ଵଵ∗9(݊ଵଵ∗ + ݊ଷଷ∗ ) , ොܽ = ݊ଷଵ∗ + ݊ଷଶ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )9(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଷଵ∗ + ݊ଷଶ∗ ), (40)ොܽூ = ݊ଵଷ∗ + ݊ଷଵ∗ − (݊ଵଵ∗ + ݊ଷଷ∗ )9(݊ଵଵ∗ + ݊ଵଷ∗ + ݊ଷଵ∗ + ݊ଷଷ∗ ) , ොܽூூ = ݊ଵଷ∗ + ݊ଶଷ∗ + ݊ଷଵ∗ − (݊ଵଵ∗ + ݊ଶଵ∗ +݊ଷଷ∗ )9(݊ − ݊ଵଶ∗ − ݊ଶଶ∗ − ݊ଷଶ∗ ) , 
 

d) table 3 × 4 
 ොܽூூூ = ݊ଷସ∗ − ݊ଵଵ∗12(݊ଵଵ∗ + ݊ଷସ∗ ) , ොܽூ = ݊ଷଵ∗ + ݊ଷଶ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )12(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଷଵ∗ + ݊ଷଶ∗ ), 

(41)ොܽ = ݊ଵଷ∗ + ݊ଵସ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )12(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଵଷ∗ + ݊ଵସ∗ ), ොܽூ = ݊ଵଷ∗ + ݊ଵସ∗ + ݊ଷଵ∗ + ݊ଷଶ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ +݊ଷଷ∗ + ݊ଷସ∗ )12(݊ − ݊ଶଵ∗ − ݊ଶଶ∗ − ݊ଶଷ∗ − ݊ଶସ∗ ) , 
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e) table 4 × 4 
 ොܽூூ = ݊ସଵ∗ + ݊ସଶ∗ + ݊ସଷ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଵଷ∗ )16(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଵଷ∗ + ݊ସଵ∗ + ݊ସଶ∗ + ݊ସଷ∗ ), 

(42)

ොܽூூூ = ݊ସଷ∗ + ݊ସସ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ )16(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ସଷ∗ + ݊ସସ∗ ), ොܽூ= ݊ଷଶ∗ + ݊ଷଷ∗ + ݊ଷସ∗ + ݊ସଶ∗ + ݊ସଷ∗ + ݊ସସ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଵଷ∗ + ݊ଶଵ∗ + ݊ଶଶ∗ + ݊ଶଷ∗ )16(݊ − ݊ଵସ∗ + ݊ଶସ∗ + ݊ଷଵ∗ + ݊ସଵ∗ ) , ොܽ = ݊ଵଷ∗ + ݊ଵସ∗ + ݊ସଵ∗ + ݊ସଶ∗ − (݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଷଵ∗ +݊ସସ∗ )16(݊ଵଵ∗ + ݊ଵଶ∗ + ݊ଵଷ∗ + ݊ଵସ∗ + ݊ସଵ∗ + ݊ସଶ∗ + ݊ସଷ∗ + ݊ସସ∗ ). 
 

To decide which of the defined scenarios takes place, you use the following 
algorithm: 
1. Find dimension of CT in question and read out related ݍ according to the rule: 2 × ݍ)	3 = 1), 2 × ݍ)	4 = 2), 3 × ݍ)	3 = 3), 3 × ݍ)	4 = 4), 4 × ݍ)4 = 5)	 
2. Set a set of scenario indices ሼ4ݍ − ݍ3,4 − ݍ2,4 −  .ሽݍ1,4
3. Calculate ܽ∗, which is an estimate of parameter a for each scenario from step 

2 by means of (38)–(42). 
4. Calculate corresponding values of the maximum likelihood functions ܮସିଷ(ܽ∗), ,(∗ܽ)ସିଶܮ ,(∗ܽ)ସିଵܮ  .ସ(ܽ∗) by means of (17)–(36)ܮ
5. Choose a scenario for which the value ܮ(ܽ∗) is the greatest. 

This algorithm will be used in section 8.1, Example 1. 
 

6.2. Three-way contingency table 
 

Let ݊௧∗  be the value of (݅, ݆,  cell and ܽ is the PFP. Then likelihood functions (ݐ
for selected three-way CT have the form: 

 
a) table 2 × 2 × 2 

 
(ܽ)ூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభభమ∗ (1 8 + ܽ⁄ )మమభ∗ ାమమమ∗ (1 8⁄ )మమభ∗ ାమభభ∗ భమమ∗ ାమభమ∗ , (43)

(ܽ)ூூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభమభ∗ భమమ∗ (1 8 + ܽ⁄ )మమభ∗ ାమభమ∗ ାమమమ∗ (1 8⁄ )భమమ∗ ାమభభ∗ , (44)
(ܽ)ூூூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ (1 8 + ܽ⁄ )మభభ∗ (1 8⁄ )ିభభభ∗ ାమభభ∗ , (45)
(ܽ)ூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభభమ∗ (1 8 + ܽ⁄ )మభభ∗ ାమభమ∗ (1 8⁄ )భమభ∗ ାమమభ∗ ାభమమ∗ ାమమమ∗ , (46)

b) table 3 × 2 × 2 
(ܽ)ܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభభమ∗ (1 8 + ܽ⁄ )యమభ∗ ାయమమ∗ (1 8⁄ )ିభభభ∗ ିభభమ∗ ିయమభ∗ ିయమమ∗ , (47)
(ܽ)ூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభభమ∗ (1 8 + ܽ⁄ )భమమ∗ ାయమభ∗ (1 8⁄ )ିభభభ∗ ିభభమ∗ ିభభమ∗ ିଷଶଵ, (48)
(ܽ)ூூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభభమ∗ ାమమభ∗ (1 8 + ܽ⁄ )భమభ∗ ାభమమ∗ ାమభభ∗ 	(1 8⁄ )మభమ∗ ାమమమ∗ ାయభభ∗ ାయమభ∗ ାయభమ∗ ାమమమ∗ ାయమమ∗ , (49)
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(ܽ)ூூூܮ  = 1)ܦ 8 − ܽ⁄ )భభభ∗ ାభభమ∗ ାయమభ∗ ାయమమ∗ (1 8 + ܽ⁄ )భమభ∗ ାభమమ∗ ାయభభ∗ ାయభమ∗ 	(1 8⁄ )మభభ∗ ାమమభ∗ ାమభమ∗ ାమమభ∗ . (50)
 

In formulas (43)–(50) ܦ = ݊!/∏ ∏ ∏ ݊௧∗ !௧ୀଵୀଵ௪ୀଵ . 
Formulas for the maximum likelihood estimator of ܽ under scenarios XXIV– 

–XXVIII for CT ݓ × ݇ ×  are given by 
 
a) table 2 × 2 × 2 
 ොܽூ = ݊ଶଶଵ∗ + ݊ଶଶଶ∗ − (݊ଵଵଵ∗ + ݊ଵଵଶ∗ )8(݊ଵଵଵ∗ + ݊ଵଵଶ∗ + ݊ଶଶଵ∗ + ݊ଶଶଶ∗ ), 

(51)ොܽூூ = ݊ଶଶଵ∗ + ݊ଶଵଶ∗ + ݊ଶଶଶ∗ − (݊ଵଵଵ∗ + ݊ଵଶଵ∗ + ݊ଵଶଶ∗ )8(݊ − ݊ଵଶଶ∗ − ݊ଶଵଵ∗ ) , ොܽூூூ = ݊ଶଵଵ∗ − ݊ଵଵଵ∗8(݊ଵଵଵ∗ + ݊ଶଵଵ∗ ) , ොܽூ = ݊ଶଵଵ∗ + ݊ଶଵଶ∗ − (݊ଵଵଵ∗ + ݊ଵଵଶ∗ )8(݊ଵଵଵ∗ + ݊ଵଵଶ∗ + ݊ଶଵଵ∗ + ݊ଶଵଶ∗ ). 
 
a) table 3 × 2 × 2 
 ොܽ = ݊ଷଶଵ∗ + ݊ଷଶଶ∗ − (݊ଵଵଵ∗ + ݊ଵଵଶ∗ )12(݊ଵଵଵ∗ + ݊ଵଵଶ∗ + ݊ଷଶଵ∗ + ݊ଷଶଶ∗ ), 

(52)
ොܽூ = ݊ଵଶଶ∗ + ݊ଷଶଵ∗ − (݊ଵଵଵ∗ + ݊ଵଵଶ∗ )12(݊ଵଵଵ∗ + ݊ଵଵଶ∗ + ݊ଵଶଶ∗ + ݊ଷଶଵ∗ ), ොܽூூ = ݊ଵଶଵ∗ + ݊ଵଶଶ∗ +݊ଶଵଵ∗ − (݊ଵଵଵ∗ + ݊ଵଵଶ∗ + ݊ଶଶଵ∗ )8(݊ଵଵଵ∗ + ݊ଵଵଶ∗ + ݊ଶଵଵ∗ + ݊ଶଵଶ∗ )  ොܽூூூ = ݊ଵଶଵ∗ + ݊ଵଵଶ∗ + ݊ଷଵଵ∗ + ݊ଷଵଶ∗ − (݊ଵଵଵ∗ +݊ଵଵଶ∗ + ݊ଷଶଵ∗ + ݊ଷଶଶ∗ )12(݊ − ݊ଶଵଵ∗ − ݊ଶଶଵ∗ − ݊ଶଵଶ∗ − ݊ଶଶଶ∗ ) . 

 
To decide which of the defined scenarios takes place, you use the following 

algorithm: 
1. Find dimension of CT in question and read out related ݍ according to the rule:  
 2 × 2 × ݍ)	2 = 6), 3 × 2 × ݍ)	2 = 7) 
 
2. Set a set of scenario indicesሼ4ݍ − ݍ3,4 − ݍ2,4 −  .ሽݍ1,4
3. Calculate ܽ∗, which is an estimate of parameter ܽ for each scenario from step 

2 according to (51)–(52) 
4. Calculate corresponding values of the maximum likelihood functions ܮସିଷ(ܽ∗), ,(∗ܽ)ସିଶܮ ,(∗ܽ)ସିଵܮ  .ସ(ܽ∗) by means of (43)–(50)ܮ
5. Choose a scenario for which the value ܮ(ܽ∗) is the greatest. 

This algorithm will be used in section 8.2, Example 4. 
 

7. GENERATING CONTINGENCY TABLE 
 

Generating CT is very important in the simulation study. The approach in the 
literature for the generating two-way CTs is the Markov Chain Monte Carlo (Di-
aconis, Sturmfels, 1998; Cryan, Dyer, 2003; Cryan et al., 2006; Chen et al., 
2005; Fishman, 2012), the Sequential Importance Sampling (Chen et al., 2005; 
Chen et al., 2006; Blitzstein, Diaconis, 2011; Yoshida, 2011), the probabilistic 
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divide-and-conquer technique (DeSalvo, Zhao, 2015), the Generalized Gamma 
Distribution (Sulewski, 2009), the bar method (Sulewski, Motyka, 2015). The bar 
method for the generating three-way CT is presented in (Sulewski, 2018a).  

In this paper we use an algorithm for generating two-way and three-way CTs 
using the bar method. The bar method is identical to the method that generates 
random numbers that follow the multinomial distribution.  

 
8. PARAMETRIC REASONING PUT INTO PRACTICE 

 
8.1. Two-way contingency table 

 
Example 1. This example compares decision making by means of classic sta-

tistic testing with likelihood based decision making. Tables 6-10 show a set of 
example two-way CTs filled one by one accordingly to the scenarios I–XX. The 
table is divided into two parts. The left hand side is related to likelihood based 
decisions. To decide which of the defined scenarios takes place, see algorithm 
in section 6.1. The right hand side is related to classic statistical testing and pre-
sents values of test statistics. The ܪ states that ܺ and ܻ are independent. Criti-
cal values, indicated by underlining, are determined by Monte Carlo method 
based on 10 order statistics. Such a large number of repetitions guaranties very 
precise results. When reading rows of the table it turns out that all the decisions 
made in a classic way are wrong. It is because untrue ܪ hypotheses have not 
been rejected. But it does not reveal anything new. This is just one more confir-
mation of what is commonly known – the classic statistical test is very conserva-
tive. The PFP ܽ is a maximal value of this parameter for which untrue ܪ is re-
jected in no scenarios. 

Tables 6–10 show that all the decisions made in a classic way are wrong un-
der the scenarios in question. It is because untrue ܪ hypotheses have not been 
rejected even in situations where the MoU does not have such small values, e.g. ܷܯ = 0.3 in scenario XX. In turn, the parametric approach detected a depend-
ency between features.  

Example 2. The conservativeness of classic testing is a reason why we 
suggest making a turnaround in this domain. The new proposal is a method of 
statistical inference and not a classical parametric test. Now there will be no 
null hypothesis, but there will be a set of competing alternative hypotheses 
instead. The former ܪ is no longer the main one, but exists among the com-
petitors of an equal rank. All the hypotheses state: “the considered two-way CT 
is generated accordingly to particular scenarios”. Each figure from 1 to 5 
shows sets of four likelihood curves. Each curve has its four attributes, namely ොܽ, ݊, table dimensions and, of course, the actual generation scenario that is 
specified in the figure's title. The legend lists all competing scenarios including 
the actual one. 
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Figure 1. The likelihood functions for ࢇෝ = . ,  = , table  ×  

 

 

 
 

 

Source: own elaboration. 
 

Figure 2. The likelihood functions for ොܽ = 0.0625, ݊ = 80, table 2 × 4 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 3. The likelihood functions for ොܽ = 0.0444, ݊ = 90, table 3 × 3 

 

 

 
 

 

Source: own elaboration. 

Figure 4. The likelihood functions for ොܽ = 0.0250, ݊ = 120, table 3 × 4 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 5. The likelihood functions for ොܽ = 0.0375, ݊ = 80, table 4 × 4 

 

 

 
 
 

Source: own elaboration. 

 
It is noteworthy (see figures 1–5) that in each set of likelihood curves, the 

curve related to the actual scenario predominates over the others. It is instruc-
tive to read out a value of ܽ௫ that maximizes likelihood function on a particular 
figure and notice that this value is close to assumed ොܽ.  

Example 3. This example is carried out in accordance with the following algo-
rithm: 
1. Find dimension of CT in question and read out related ݍ according to the 

rule:  2 × ݍ)	3 = 1), 2 × ݍ)	4 = 2), 3 × ݍ)	3 = 3), 3 × ݍ)	4 = 4), 4 × ݍ)4 = 5) 
2. Set a set of scenario indices ሼ4ݍ − 3, ݍ4 − 2, ݍ4 − 1,  .ሽݍ4
3. Calculate values of PFP by means of ܽ = ݅)	(݇ݓ)/0.1݅ = 1,2, … ,10). 
4. Set a sample size ݊. 
5. Repeat the following steps ݑ = 10ସ times: 

5.1. Let ܵܿସିଷ = 0, ܵܿସିଶ = 0, ܵܿସିଵ = 0, ܵܿସ = 0 
5.2. Generate CT under the scenarios that you have chosen in Step 2.  
5.3. Calculate ܮସିଷ(ܽ), ,(ܽ)ସିଶܮ ,(ܽ)ସିଵܮ  .ସ(ܽ) by means of (17)–(36)ܮ
5.4. If ܮݔܽܯ = ସିଷ(ܽ), then ܵܿସିଷܮ = ܵܿସିଷ + 1,  

If ܮݔܽܯ = ସିଶ(ܽ), then ܵܿସିଶܮ = ܵܿସିଶ + 1, 
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If ܮݔܽܯ = ସିଵ(ܽ), then ܵܿସିଵܮ = ܵܿସିଵ + 1, 
If ܮݔܽܯ = ସ(ܽ), then ܵܿସܮ = ܵܿସ + 1. 

6. Calculate probabilities of recognizing (PoR) scenarios. These are probabili-
ties for the actual scenario to be recognized as one of scenarios in ques-
tion. ܲݎସିଷ = ܵܿସିଷ/ݎܲ ,ݑସିଶ = ܵܿସିଶ/ݎܲ ,ݑସିଵ = ܵܿସିଵ/ݎܲ ,ݑସ = ܵܿସ/ݑ. 
Figures 6-10 present PoR(a) functions for two-way CT in question. Sample 

sizes for a given CT are different because maximal MoU values under the 
scenarios are different (see table 4). The minimal sample sizes are chosen in 
such a way that probabilities of proper recognition (actual I as I, …, actual XX 
as XX) are greater than probabilities of improper recognitions for all the ܽ 
values.  

 

Figure 6. The PoR actual scenario as one of I–IV scenarios, table 2 × 3 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 7. The PoR actual scenario as one of V–VIII scenarios, table 2 × 4 

 

 

 
 

 

Source: own elaboration.  
 

Figure 8. The PoR actual scenario as one of IX–XII scenarios, table 3 × 3 

 

 

  
 

 

 

 
Source: own elaboration. 
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Figure 9. The PoR actual scenario as one of XIII–XVI scenarios, table 3 × 4 

 

 

 
 

 

Source: own elaboration. 
 

Figure 10. The PoR actual scenario as one of XVII–XX scenarios, table 4 × 4 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figures 6–10 show that even when samples are small (e.g. 15 items), proba-
bilities of proper recognition are greater than probabilities of improper recogni-
tions, regardless how small the PFP is. The bigger PFP ܽ, the bigger PoR actual 
scenario. In the classic statistical testing related to 2 × 3 CT (see table 6) untrue 
H0 has not been rejected even if ݊ = 60, PFP ܽ = 0.05 and ܷܯ = 0.2. In a like-
lihood based decision dependence between features in 2 × 3 CT is visible al-
ready for ݊ = 15 and PFP ܽ < 0.05 (see figure 6). In the classic statistical testing 
related to 2 × 4 CT (see table 7) untrue H0 has not been rejected even if ݊ = 80, 
PFP ܽ = 0.0625 and ܷܯ = 0.25. In a likelihood based decision dependence 
between features in 2 × 4 CT is visible already for ݊ = 25 and PFP ܽ = 0.0625 
(see figure 7). In the classic statistical testing related to 3 × 3 CT (see table 8) 
untrue H0 has not been rejected even if	݊ = 90 , PFP ܽ = 0.0444 and ܷܯ =0.237. In a likelihood based decision dependence between features in 3 × 3 CT 
is visible already for ݊ = 30  and PFP ܽ < 0.0444 (see figure 8). A similar situa-
tion occurs related to 3 × 4 and 4 × 4 CTs.  

 
8.2. Three-way contingency table 
 

Example 4. This example compares decision making by means of classic 
statistic testing with likelihood based decision making. Tables 11–12 show 
a set of example three-way CTs filled one by one accordingly to the scenarios 
XXI–XXVIII. The description of these tables has been presented in the exam-
ple 1. To decide which of the defined scenarios takes place, see algorithm in 
section 6.2. 

 
Tables 11–12 show that all the decisions made in a classic way are wrong 

under the scenarios in question. It is because untrue ܪ hypotheses have not 
been rejected even in situations where the MoU does not have such small val-
ues, e.g. ܷܯ = 0.267 in scenario XXVIII. In turn, the parametric approach de-
tected a dependency between features. 

Example 5. This example is very similar to the Example 2. The new pro-
posal is a method of statistical inference, not a classical parametric test. 
All the hypotheses state: “the considered three-way CT is generated accord-
ingly to particular scenarios”. Each of figures from 11 to 12 shows a sets of 
four likelihood curves. Each curve has its four attributes, namely ොܽ, ݊, table 
dimensions and, of course, the actual generation scenario that is specified in 
the figure's title. The legend lists all competing scenarios including the actual 
one. 
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Figure 11. The likelihood functions for ොܽ = 0.0625, ݊ = 80, table 2 × 2 × 2 

 

 

 
 

 

Source: own elaboration. 

 
Figure 12. The likelihood functions for ොܽ = 0.0333, ݊ = 120, table 3 × 2 × 2 

 

 

 
 

 

 

 
Source: own elaboration. 
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It is noteworthy (see figures 11–12) that in each set of likelihood curves, the 
curve related to the actual scenario predominates over the others. It is instruc-
tive to read out a value of ܽ௫ that maximizes likelihood function on a particular 
figure and notice that this value is close to assumed ොܽ.  

Example 6. This example is carried out in accordance with the following algo-
rithm: 
1. Find dimension of CT in question and read out related ݍ according to the rule:  
 2 × 2 × ݍ)	2 = 6), 3 × 2 × ݍ)	2 = 7) 

 
2. Set a set of scenario indices ሼ4ݍ − 3, ݍ4 − 2, ݍ4 − 1,  .ሽݍ4
3. Calculate a value of PFP by means of ܽ = ݅)	(݇ݓ)/01݅ = 1,2, … ,10). 

Steps 4–6 are the same as in the example 3. 
Figure 13–14 present PoR(a) functions for three-way CT in question. Sample 

sizes for a given CT are different because a maximal MoU values under the 
scenarios are different (see table 5). The minimal sample sizes are chosen in 
such a way that probabilities of proper recognition (actual XXI as XXI, …, actual 
XXVIII as XXVIII) are greater than probabilities of improper recognitions for all 
the ܽ values.  

 
Figure 13. The por actual scenario as one of XXI–XXIV scenarios, table 2 × 2 × 2 

 

 

 
 

 

 

 
Source: own elaboration. 
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Figure 14. The por actual scenario as one of XXV–XXVIII scenarios, table 3 × 2 × 2 

 

 

 
 

 

Source: own elaboration. 

 
Figures 13–14 show that even when samples are small (e.g. 30 items), prob-

abilities of proper recognition are greater than probabilities of improper recogni-
tions, regardless how small the PFP is. The bigger PFP ܽ, the bigger PoR actual 
scenario. In the classic statistical testing related to 2 × 2 × 2 CT (see table 11) 
untrue H0 has not been rejected even if ݊ = 80, PFP ܽ = 0.0625 and ܷܯ =0.25. In a likelihood based decision dependence between features in 2 × 2 × 2 
CT is visible already for ݊ = 30 and PFP 0625.0a  (see figure 13). In the 
classic statistical testing related to 3 × 2 × 2 CT (see table 12) untrue H0 has not 
been rejected even if ݊ = 120, PFP ܽ = 0.0333 and ܷܯ = 0.267. In a likelihood 
based decision dependence between features in 3 × 2 × 2 CT is visible already 
for ݊ = 30 and PFP ܽ < 0.0333 (see figure 14). 

 
9. CONCLUSIONS 

 
There are two new elements in the method of statistical reasoning from CTs 

presented in this paper. Firstly, CTs are parameterized with the probability flow 
parameters. Parametric reasoning turns out to be much more sensitive in re-
vealing dependency between features than classic reasoning. Secondly, we 
suggest a scenario (i.e. internal mechanism) under which particular CT comes 
into being.  
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Figuring up more and more general scenarios does not seem very difficult. The 
researches can be generalized by introducing a part of flow parameter, e.g. ܽ/2, ܽ/3,… also remembering about the condition of normalization. The re-
searches can also be generalized by introducing several flow parameters. This, 
however, causes a significant deterioration in the properties of the parameter 
estimators. You can always add more parameters to the model, however, this 
might worsen their estimation. Hence, inflated generalizations should be avoided.  
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WNIOSKOWANIE PARAMETRYCZNE I NIEPARAMETRYCZNE 

W TABLICACH DWUDZIELCZYCH I TRÓJDZIELCZYCH 
 

Streszczenie 
 

W artykule proponowane są scenariusze generowania tablic dwudzielczych 
(TD) z parametrem przepływu prawdopodobieństwa i zdefiniowane są miary 
nieprawdziwości H0. W artykule wykorzystywane są statystyki z rodziny ܺଶ oraz 
statystyka modułowa |ܺ|. Niniejsza praca jest prostą próbą zastąpienia niepara-
metrycznej metody wnioskowania statystycznego metodą parametryczną. Meto-
da największej wiarygodności jest wykorzystana do oszacowania parametru 
przepływu prawdopodobieństwa. W pracy opisane są także instrukcje genero-
wania TD za pomocą metody słupkowej. Symulacje komputerowe przeprowa-
dzono metodami Monte Carlo.  

Słowa kluczowe: wnioskowanie statystyczne, funkcja największej wiarygod-
ności, tablice kontyngencji, test parametryczny, parametr przepływu prawdopo-
dobieństwa 

 
NONPARAMETRIC VERSUS PARAMETRIC REASONING BASED ON 

TWO-WAY AND THREE-WAY CONTINGENCY TABLES  
 

Abstract 
 

This paper proposes scenarios of generating two-way and three way contin-
gency tables (CTs). A concept of probability flow parameter (PFP) plays a cru-
cial role in these scenarios. Additionally, measures of untruthfulness of ܪ are 
defined. The power divergence statistics and the |ܺ| statistics are used. This 
paper is a simple attempt to replace a nonparametric statistical inference from 
CTs by the parametric one. Maximum likelihood method is applied to estimate 
PFP and instructions of generating CTs according to scenarios in question are 
presented. The Monte Carlo method is used to carry out computer simulations. 

Keywords: statistical inference, likelihood function, contingency tables, par-
ametric test, probability flow parameter 
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1. INTRODUCTION

Administrative regions are becoming discrepant with naturally grown function-
al areas. The historical boundaries diverge often from the contours of territories 
consistent due to socioeconomic reasons.3 An urgent need emerges to develop 
the concept of ‘functional regions’, often in the form of Labour Market Areas 
(LMAs). LMA is a functional, geographic region beyond the administrative 
boundaries. It is economically integrated, while residents may find jobs within 
a reasonable commuting distance and might change their job without changing 
their place of residence (compare Gołata, 2004). Therefore, LMAs allow to ana-
lyze the effects of commuting on the labour market centres and their hinterland. 
It should be beneficial for the design of employment, labour mobility and urban 
planning policies. LMAs could help to decide on the investment plans, road, train 
infrastructure, pre-schools, kindergartens or managing bus, train connections 
and other.  

A close concept to the LMAs are the Larger Urban Zones (LUZ) (Carlquist, 
2006). LUZ is a functional urban area which includes the central city (i.e. core) 
and an area of the core’s main commuting flows from the neighbouring localities 
(i.e. commuting zone). Młodak (2012) presented a delineation of metropolises 
and LUZ for Poland and explained the differences between LUZ and Functional 
Urban Areas (FUA). In turn, FUA for Poland were delineated by taking into ac-
count a broader set of selected economic issues like: commuting, migration be-
tween the core and the commuting zone, share of the employment outside agri-
culture sector, number of companies per number of residents, housing market 
and population density (Śleszyński, 2013). Other works on the analyses of func-

1 Nicolaus Copernicus University in Toruń, Faculty of Economic Sciences and Management, Eco-
nomics Department, 13a Gagarina St., 87-100 Toruń, Poland, Statistical Office in Bydgoszcz, Sur-
veys and Analysis of Labour Market Centre, 1–3 Stanisława Konarskiego St., 85–066 Bydgoszcz, 
Poland, corresponding author – e-mail: m_ryczkowski@umk.pl. 

2 Statistical Office in Bydgoszcz, Surveys and Analysis of Labour Market Centre, 1–3 Stanisława 
Konarskiego St., 85–066 Bydgoszcz, Poland. 

3 See: Młodak (2008) for the selected methods to cluster spatial areas in the surveys of population 
flows and Klapka, Halás (2016) for a typology of functional regions in geographical research. 
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tional urban areas for Poland include, for example: Sołtys, Golędzinowska 
(2017), Szafranek (2017), OECD (2016), Śleszyński (2014). 

LUZ, similarly like LMAs and as opposed to FUA, are delineated by using 
mainly data on commuting flows, which are the main indicator of functional link-
age (Rakowska, 2014). However, LMAs are sub-regional geographical areas 
where the majority of the labour force works and lives. As opposed to it, a com-
muting zones of LUZ are delineated by Eurostat if at least 15 percent of em-
ployed residents work in a city, while if 15 percent of the employed live in one 
city and work in another city, these cities are treated as a single city. In conse-
quence, LUZ are larger than LMAs and LUZ should contain several LMAs to 
capture the impact zone of a city. Therefore, LMAs have the potential to play 
a key role in the evaluation and monitoring of policies at smaller, local areas. 

The delineation of Polish local labour markets presumably for the first time in 
over several years was carried out by Gruchociak (2012, 2013). Author used 
variants of the taxonomic approach to obtain two LMA’s delineations, which 
were next compared to each other. The algorithm was based on a methodology 
which was an early attempt of Eurostat (1992) for delineating employment zones 
at that time. The more recent article of Gruchociak (2015) compared the differ-
ences between local labour markets obtained by three different methods and at 
two points in time, namely for the years 2006 and 2011. The 2011 data came 
from the 2011 Polish Census of Population and Housing, whereas for the Euro-
pean variant author used the European Algorithm for Regionalisation (Eurostat, 
1992). Similarly, Wdowicka (2016) using data from the 2011 Census delineated 
three different sets of local labour markets with the Eurostat (1992) methodolo-
gy. Wdowicka (2016) discussed and applied also the selected criteria for evalua-
tion of the results. In turn, Szczebiot-Knoblauch, Kisiel (2014) analysed the sup-
ply side of the labor market in rural areas, although authors used the administra-
tive boundaries and they have not delineated any new areas. 

The goal of the article is to delineate LMAs in Poland, to discuss LMA meth-
odology and its problems. The novelty is that we use a more recent version of 
the Mike Coombes, Office for National Statistics (2015) algorithm. The algorithm 
has been simplified in comparison to previous versions of the TTWA (Travel to 
Work Areas) algorithm in order to remove the no longer needed set of initial 
stages to form ‘proto-TTWAs’ before the main LMA definition process is applied. 
Moreover, the final version of the algorithm was a result of the discussions dur-
ing Eurostat Task Force’s meetings, seminars and workshops. We add new 
insights into the literature as we select typical input parameters for Poland. We 
also propose the output of Polish taxonomy for this purpose. The relevance of 
the proposal rests on the fact that in literature exists no unambiguous solution to 
select the optimal values of parameters in the TTWA algorithm. Polish experi-
ences could be beneficial – especially that most empirical papers on LMAs con-
cern highly developed countries. 



352 Przegląd Statystyczny, tom LXV, zeszyt 3, 2018 
 

The policies, decisions and investments resting on regional, functional data 
(instead on historical boundaries) seem to be required in modern, knowledge-
based economies (KBE). The reason is that information infrastructure is a key 
determinant of KBE (Madrak-Grochowska, 2016). Moreover, Ręklewski, Rycz-
kowski (2016) evidenced that regional labour market well-being improves the 
quality of public’s life. In turn, Balcerzak, Pietrzak (2015) found a positive impact 
of the efficiency of the institutions in relation to the potential of the global KBE on 
the quality of life. The access to the proper spatial information may accelerate 
economic growth and in consequence may lead to a faster progress towards 
Europe 2020 targets (European Commission, 2010). Šnajder, Bobek (2014) 
confirmed that the concept of functional regions is relevant for the effective de-
velopment. Authors argue that in Slovenia LMAs or functional regions could 
improve the quality of services, work against state centralization and provide 
additional stimulus for the regional development. Moreover, Stimson et al. 
(2016) point that administrative regions create the modifiable area unit problem, 
which makes it necessary to address spatial autocorrelation issues. Finally, la-
bour mobility associated with functional regions is getting a lot of attention now-
adays because it is a mean by which knowledge circulates at the regional scale 
and matches labour supply and demand (Huber, 2012). 

The article is organized as follows. Second section presents literature review 
and international experiences with LMAs. In the third section we describe the 
methodology and briefly the EU-TTWA algorithm, followed by a fourth section 
with data description. In the fifth section, we present the results (with LMA maps) 
while, in the sixth section, we discuss key problems and possible solutions. 

 
2. EXPERIENCES OF COUNTRIES 

 
Numerous and alternative approaches to the definition of local labour market 

areas have been developed in recent decades. Casado-Diaz, Coombes (2011) 
review international scientific research on the delineation of local labour market 
areas. Official recognition of functional regions varies considerably between 
countries (OECD, 2002). For instance, in the United States already since 1980s, 
hierarchical cluster analysis was used by the Census Bureau to group counties 
into Commuting Zones and LMAs. LMAs were defined similarly to Commuting 
Zones, except that they were restricted by a minimum population of 100,000 
persons. Nevertheless, LMAs were only estimated in 1980 and in 1990 (United 
States Department of Agriculture). The approach to LMAs differs among coun-
tries. In this respect, it was an important and challenging task ahead of Eurostat 
to define a methodology for creating harmonized LMAs throughout Europe. Ulti-
mately, the algorithm is largely based on its British counterpart. 

TTWAs became the official British definition of LMAs since 1960s, although 
their predecessors go further back in time. Following each national census and 
starting from the 1971 one, functional areas have been delineated using the data 
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on commuting flows based on the place of residence of an employee and his/her 
workplace (UK Office for National Statistics, 2015). The method was revealed to 
work well in practice and has led Coombes (2000) to ascertain that: ‘the TTWA 
method had been shown to be the best practice for defining local labour market 
areas across Europe’. 

In December 2014, Italian National Institute of Statistics (Istat) released LMAs 
(Istat, 2014; Franconi et al., 2016) that were based on the commuting data with 
the use of the TTWA method of Coombes, Bond (2008). Istat has been working 
on this method together with Eurostat and with members of the designated Task 
Force. The leading role in the Task Force was assigned to Istat, due to its long 
experience in defining functional regions. Istat released LMAs already in 1989 
using the commuting data from the 1981 population Census. Next, similar exer-
cises were repeated in 1991, 2001 and 2011.  

For other developed countries the concept of LMAs has also been developed. 
Kropp, Schwengler (2016) with the use of a novel three-step method obtained 
50 German labour market regions that were quite heterogeneous in terms of 
size. Stimson et al. (2016) implemented the Intramax procedure to the journey-
to-work (JTW) commuting flows from the 2011 census data to derive functional, 
economic regions for Australia. In fact, many approaches could be used to iden-
tify functional regions. For instance, Kim et al. (2015) proposed a spatial optimi-
zation model with the p-functional regions problem, to solve a regionalization 
dilemma. Authors considered geographic flows and grouped areal units into 
smaller number of clusters to classify the areal units with similar properties. 

 
3. METHODOLOGY 

 
The description of the algorithm implemented in Poland (EU-TTWA) can be 

found in the Eurostat Task Force’s LMA Final Report (Eurostat, 2015). There-
fore, we will present it only briefly. We measure self-containment for the supply 
and demand side. Supply side self-containment (SSC) is the number of people 
living and working in an area divided by the number of residents in the area. 
Demand side self-containment (DSC) is the number of people living and working 
in an area divided by the number of jobs (residents and not-residents employed) 
in the area. The EU (TTWA) method uses four parameters:  
a) minimum self-containment (minSC) – a level of self-containment SC, where 

SC=min(SSC, DSC), at which clusters of large sizes are acceptable, 
b) target self-containment (tarSC), a level of SC at which clusters of small sizes 

are acceptable, 
c) minimum number of working residents (minSZ) for a cluster to be considered 

a valid LMA,  
d) target number of working residents (tarSZ) – a value at which lower levels of 

self-containment are acceptable for an LMA. 
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We apply a function which assesses whether a grouping of gminas comprises 
a viable LMA. This function has the following properties:  
a) Cluster of LAUs-2 (Local Administrative Unit: gmina) with self-containment 

(on supply and demand side) that exceeds tarSC and has at least minSZ 
workers living in the area should be accepted.  

b) Cluster of LAUs-2 with self-containment (on supply and demand side) that 
exceeds minSC and has at least tarSZ workers living in the area should be 
accepted.  

c) Cluster of LAUs-2 in which fewer than minSZ workers live should be rejected.  
d) Cluster of LAUs-2 with self-containment (on either supply or demand side) 

that is less than minSC should be rejected.  
e) For cluster of LAUs-2 where live between minSZ and tarSZ workers, the re-

quired self-containment (on both supply and demand side) should progres-
sively decrease from tarSC for the smallest areas to minSC for the largest 
ones. 

Therefore, we classify a cluster of LAU-2s to be an LMA if it is consistent with 
the a–e points, that is the following validity condition must be met:  
 
 minSCtarSC  ቆ1 − ൬1 −minSCtarSC ൰ܺܣܯ ൬ tarSZ	 − 	ܼܵtarSZ	 − 	minSZ , 0൰ቇቆܰܫܯ൫ܵܥ, 	tarSC൯tarSC ቇ. (1)

 
The right-hand side of the condition (1) represents a function that measures the 

trade-off between the size of a LAU2 unit (SZ) [in occupied persons] and the mini-
mum of SSC and DSC (SC=min(SSC, DSC)). The validity condition (1) fulfils all the 
properties from ‘a’ to ‘e’. Coombes and Bond’s (2008) methodology allows for a 
certain degree of flexibility in defining the value of the four parameters. In line with 
Eurostat’s guidelines each country should define its individual values depending on 
the specificity of the economy. Nevertheless, the typical values for tarSC are be-
tween 0.75 and 0.8, for the minSC are between 0.6 and 0.7, while the size parame-
ters depend on the data – usually they take values from 10 thousands and more. 

The algorithm to delineate LMAs checks every LAU against the condition (1). 
If not all LAUs fulfil the condition, the LAUA that gives the lowest value for the 
right-hand side of the condition (1) is selected. This LAUA is then assessed 
against all other LAUs to find the LAUB which has the most important commuting 
flows in line with the formula: 
 
ܣܮ)ቆCFܺܣܯ  ܷ → ಲܴܧ)ଶܷܣܮ ൈ ಳܧ  ܷܣܮ)ܨܥ → ܣܮ ܷ)ଶܴܧಳ ൈ ಲܧ ቇ. (2)

 
Where, CF – commuting flows, ER – employed residents, E – employed resi-

dents and non-residents. LAUA and LAUB are grouped. The grouping of LAUA 
and LAUB (LAUAB) is now considered as one entity and the joined commuting 
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flows to the other LAUs are recalculated. Cases when LAUs need to be re-
grouped or put on a reserve list (a list of LAUs that fail the validity condition dur-
ing merging) are described in Eurostat (2015). The process stops when all LAUs 
or groupings of LAUs fulfil the condition (1). 

The problem with the EU-TTWA algorithm is a lack of unambiguous method to 
select the final values for the minSC, tarSC, minSZ and tarSZ. Therefore, we 
compared basic data between Poland and countries, which had already used 
the TTWA algorithm (Italy and Great Britain). As a result of the comparisons and 
the discussions at the Eurostat LMA’s seminars and workshops, we have cho-
sen the following parameter values for further analyses:  
• minSZ = {1,000; 2,000; 3,000; 3,500; 4,000; 5,000} 
• tarSZ = {7,500; 10,000; 15,000; 16,000; 17,000; 18,000; 19,000; 20,000; 

25,000; 30,000; 35,000} 
• minSC = {0.5, 0.55, 0.6, 0.667, 0.7} 
• tarSC = {0.667, 0.7, 0.75, 0.8, 0.85, 0.9} 

We have taken into account the combinations of the above values. In conse-
quence, we estimated several hundred LMAs and evaluated their properties 
using functions implemented in ‘LabourMarketAreas’ R-package available on 
CRAN4. In particular, we calculated the characteristics for the alleged LMAs: 
number of clusters consisting of only one gmina (undesirable), number of clus-
ters which fulfill the validity condition (desirable), number of clusters with no cen-
tral gmina (namely, no gmina with more people commuting into the gmina than 
commuting out of the gmina – undesirable), arithmetical means of the supply 
side and demand side self containment (the lower is the worse, as both values 
indicate then that LMA is too ‘loose’, namely the commuting flows interact 
strongly with other areas) and the Q-modularity index5 of Newman, Girvan 
(2004). We resigned from the sets of input parameters if at least one measure 
had undesirable properties and we accepted the input parameters, which deliv-
ered expected and desirable properties for all the measures. Finally, LMAs with 
too many non-contiguous areas or with high number of gminas on a reserve list 
were treated as inappropriate. We refer to this part: a ‘sensitivity analysis’.6 

Next, to rank the sets of input parameters with desirable properties (and after 
abandonment of the sets with undesirable properties), we used the Hellwig’s 
Method of a taxonomic measure of development (Hellwig, 1968; Nowak, 1990; 
                      

4 The most recent version is: Ichim et al. (2017), https://cran.r-project.org/web/packages/ 
LabourMarketAreas/index.html. 

5 Q-modularity index stands for a quality measure for each split of a network into communities. It 
verifies the correlation between the probability of having an edge joining two sites and the fact that 
the sites belong to the same community. It is verified for every split while moving down a dendro-
gram in order to detect local peaks. It equals unity in case of strong community structures – in reality 
strong community structures are represented by smaller values, typically from 0.3 to 0.7. 

6 The desired and undesired values for the measures were selected by comparisons with the av-
erage outcome for all the potential LMAs.  
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Suchecki, 2010). The method was recently applied, for instance, in Balcerzak 
(2016). The level of a complex phenomenon (quality of LMAs) is evaluated by a 
synthetic variable calculated for every LMA as a distance from the abstract, ideal 
solution (defined by multiple-criteria: stimulants and destimulants). The varia-
bles, for which an increase in their value lead to the improvement of the LMA’s 
properties (stimulants) were: mean of the demand side self-containment of 
LMAs, mean of the supply side self-containment of LMAs, median of the per-
centage of internal flows (excluding flows having the same gmina as origin and 
destination) within LMAs to the total internal flows (Cohesion 1), median of the 
ratio of the number of links between communities inside LMA (excluding itself) to 
the maximum number of possible links (Cohesion 2), Q-modularity index. The 
variables, for which an increase in the value lead to the deterioration of LMA’s 
properties (destimulants) were: number of LAUs in a reserve-list, percentage of 
LMAs with only one LAU, percentage of clusters with the right-hand side of the 
validity condition (1) smaller than unity, percentage of clusters with no LAU hav-
ing a centrality measure7 greater than unity. All these statistics were computed 
cross all LMAs constructed using a given set of input parameters. 

In consequence, we have obtained 144 efficient sets of parameters. To unify 
the variables (stimulants and destimulants), we standardized them to obtain 
variables 	ݖ	with a zero mean and a unitary variance for i=1,2,…,n   j=1,2,…,m, 
where: ݊ – number of sets of expected input parameters, where n=144, ݉ – number of variables (stimulants and destimulants), where m=9. 

Next, we changed all the variables into stimulants by multiplying the values of 
the standardized destimulants by minus one. The optimal object would be then: 
ௐݖ  = 	max  			,	ݖ	
 

The distance of each LMA from the abstract, optimal benchmark was meas-
ured by the Euclidean formulae: 
 
 ݀ = 	ඩ(ݖ 	ݓௐ)ଶݖ	−

ୀଵ ݅	ݎ݂				 = 1,2, … , ݊	. (3)

 
We assumed all the weights ݓ to be equal (in the basic scenario), where: 
 

 ∑ ୀଵݓ = 1 and ݓ ≥ ݆	ݎ݂	0 = 1,2, … ,݉.  
                      

7 The centrality measure ݇ܥ=∗ೖିೖೖೖ∗ିೖೖ, where ∗݂ denotes commuting flows from all gminas to gmina ݇, ݂∗ are the commuting flows from gmina k to all gminas and ݂ denotes commuting flows within 
gmina k. 
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The development measure (synthetic variable) is given by (the higher the val-
ues of  ݉, the better LMAs’ properties): 

 
 ݉ = 1 − ݀݀  , (4)

 
where ݀ is the Euclidean distance between ݖௐ and ݖ, ݉ ∈  ሾ0,1ሿ and: 

 
 ݀ =  ට∑ ௐݖ)  ୀଵݓ)ଶݖ − . (5)

 
Table 1. ALTERNATIVE WEIGHTS USED TO CONSTRUCT THE TAXONOMIC MEASURE OF 

DEVELOPMENT 

Variables Weights 1 Weights 2 Weights 3 

Destimulants 

Number of LAUs in a reserve-list  ........... 0 0.1 0 
LMAs with only one LAU  ........................ 0.125 0.15 0.16 
LMAs with expression (1) smaller than 

unity  .................................................... 
0.125 0.17 0.18 

LMAs with centrality measure greater 
than unity  ............................................ 

0.125 0.13 0.14 

Stimulants 

Mean SC demand side  .......................... 0.125 0.07 0.1 
Mean SC supply side  ............................. 0.125 0.07 0.1 
Cohesion 1  ............................................. 0.125 0.06 0.06 
Cohesion 2  ............................................. 0.125 0.06 0.06 
Q modularity index  ................................. 0.125 0.19 0.2 
Sum of weights  ...................................... 1 1 1 

Source: own elaboration. 

We experimented also with different structures of weights (table 1). Eventual-
ly, the final, chosen by us set of input parameters was evaluated on the basis of 
the knowledge of experts from the statistical offices. The acceptance of the de-
lineated LMAs was based on comparisons of the LMAs with the official labour 
market data and spatial distribution of companies that could attract employment. 

 
4. DATA 

 
Data come from the Polish National Census of Population and Housing 2011. 

The Census was based on direct interviews and twenty-eight administrative 
sources. Data for creating LMAs are aggregated at the LAU–2 level. We used 
administrative part of the Census to create a matrix of commuting flows. Persons 
at the age of fifteen years old or more and having in the National Insurance Sys-
tem an insurance code of the employed were taken into account. Persons, who 
were not employed, working abroad or those for whom it was impossible to de-
fine a place of work from the registers, were excluded from the matrix. Next, for 
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each person, two LAU-2 codes: living_code (place of residence of an employee) 
and working_code (place of work of an employee) were specified. Each farmer 
was considered as living and working in the same gmina. Persons who have not 
declared travelling to work in a tax registry, had their working_code and liv-
ing_code set equal. The final matrix of commuting flows between living_code 
and working_code contained 277,686 links (the number stands for existing com-
binations of gminas, not for people commuting to work between gminas). 

 
5. RESULTS 

 
Since density of population in Poland is lower than the density of population in 

Great Britain and in Italy, it was decided to check the target self-containment 
between 0.667 and 0.85. Lower (higher) values of the target self-containment 
resulted in too many (too few) LMAs. Simple and proportional relationship be-
tween the density of population and the number of LMAs in Italy and Great Brit-
ain, suggests that the number of LMAs in Poland should fall between 110 and 
378. According to Eurostat guidelines in each LMA the majority of persons is 
supposed to both live and work. Therefore, the values for minimal self contain-
ment below 0.5 were not considered. To maintain the international comparability 
of LMAs’ definitions, the value of the minimal self-containment was decided to 
be analyzed between 0.6 and 0.7. The upper bounds for the minimal size of 
LMA and for the target size of LMA were chosen close to the values in Great 
Britain. Their lower bound was chosen equal to the values in Italy. The most 
important characteristics of labour market in Italy, Great Britain (UK) and Poland 
are summarized in table 2. 

 
Table 2. BASIC DATA ON ITALY, GREAT BRITAIN AND POLAND IN 2011 

Variable Italy Great Britain Poland 

Population (persons)  ..............................  59,433,744 63,182,180 38,044,565 

Population of 15 years & more (persons) 51,107,701 52,082,285 32,262,995 

Economically active (persons)  ...............  25,985,295 32,442,335 17,576,246 

Employed (persons)  ...............................  23,017,840 30,008,635 15,443,421 

Unemployed (persons) ...........................  2,967,455 2,433,705 2,132,825 

Area (thousands km2)  ............................  302,073 248,528 312,679 

Density of population (persons/km2)  ......  197 254 122 

Number of building blocks1  .....................  8,092 10,399 3,081 

Minimal size of LMA (working residents)  1,000 3,500 4,000 

Target size of LMA (working residents) 10,000 25,000 30,000 

Minimal self-containment of LMA  ...........  0.6 0.667 0.667 

Target self-containment of LMA  .............  0.75 0.75 0.8 
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Table 2. BASIC DATA ON ITALY, GREAT BRITAIN AND POLAND IN 2011 (dok.) 

Variable Italy Great Britain Poland 

Number of LMAs  ....................................  611 228 339 

Average population in a LMA (persons) 97,273 277,114 112,226 

Average area of a LMA(thousands km2) 494 1,090 922 

Average number of building blocks in 
a LMA  .................................................  13 46 9.1 
1In Poland building blocks consist of gminas (LAU-2); in Italy LAU-2; in Great Britain: a) in England and Wales 

layer super output areas (LSOA); b) in Scotland data zones (DZ); c) in Northern Ireland super output areas (SOA)  
Source: own elaboration on the basis of Eurostat, Europa.eu portal, Istat, INSEE, CSO Poland and the Popula-

tion Census 2011 data. 

Using different combinations of the selected values of the four parameters 
(p. 7), we estimated several hundred LMAs in line with the EU-TTWA method. 
Next, after the ‘sensitivity analysis’ (i.e. the procedure of acceptance of the re-
sults or their rejection due to LMAs’ properties), we performed the rank analysis 
for the n=144 most reliable sets of parameter values (table 3). 

Table 3. RANKING OF THE TOP TEN VALUES OF THE PARAMETERS ACCORDING TO THE 
TAXONOMIC MEASURE OF DEVELOPMENT FOR POLAND 

Development measure Rank MinSZ MinSC TarSZ TarSC NbClusters 

0.653 1 4000 0.667 30000 0.8 339 
0.649 2 3000 0.667 20000 0.8 391 
0.646 3 4000 0.667 25000 0.8 346 
0.644 4 4000 0.667 20000 0.8 366 
0.643 5 5000 0.667 25000 0.75 386 
0.643 6 5000 0.667 20000 0.75 390 
0.642 7 5000 0.667 15000 0.8 368 
0.637 8 3000 0.667 25000 0.8 371 
0.637 9 4000 0.667 15000 0.8 387 
0.633 10 5000 0.667 25000 0.8 337 

Source: own elaboration. 

The chosen, final set of parameter values (table 2; table 3, row 1) allowed us 
to delineate 339 areas (Map 1) within which people commute. Different weights 
for the stimulants and destimulants in the ranking method have not affected the 
choice. 

The smallest population density in Poland corresponds to the highest minimal 
size of LMA and to the highest target size of LMA. In consequence, both the 
average population and average area of an LMA is between values obtained for 
Italy and Great Britain. Moreover, Poland having the biggest average area of 
building blocks, has the smallest number of building blocks per LMA. Two LMAs 
consist of one gmina as they fulfill the condition of being a valid LMA (see table 
4 for other characteristics). 
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Map 1. Labour Market Areas in Poland in 2011 

 
Grey contours mark gminas (LAU2), while LMAs are reflected by different colors. 
Source: own elaboration using R software and EU-TTWA algorithm on the Population Census 2011 data. 

 
Table 4. POLISH LABOUR MARKET AREAS – SUMMARY 

Characteristic Value 

Number of LMAs  ..................................................................................................  339 
Mean self-containment .........................................................................................  0.816 
Mean size (persons)  ............................................................................................  41,818 
Mean number of gminas forming the LMA  ...........................................................  9.1 
Mean validity  ........................................................................................................  1.12 
Number of LMAs with validity < 1  ........................................................................  1 
Number of links between LMAs  ...........................................................................  46,167 
Number of LMAs with no gminas having a centrality measure > 1  ......................  41 
Mean SC (demand side)  ......................................................................................  0.902 
Standard deviation of the DSC  ............................................................................  0.050 
Mean SC (supply side) .........................................................................................  0.822 
Standard deviation of the SSC  ............................................................................  0.055 

Source: own elaboration on the Population Census 2011 data. 
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LMAs should constitute economically integrated regions. Indeed, for the ratio 
of the unemployed to the population in the working age: an average of the ratio’s 
absolute deviation between LMAs is 2.5%, whereas an average of the ratio’s 
absolute deviation inside LMAs is 1.3%. This indicates that the differences are 
greater between LMAs than within LMAs. 

 
Figure 1. Selected statistics on the LMA unemployment rate for voivodships, March 2011 

 
Any LMAx is assigned to the voivodship, where gmina with the highest number of working residents among all 
gminas belonging to this LMAx.is located For every voivodship, the minimum, first quartile, median, third quartile 
and the maximum values of the unemployment rate were visualized. The red lines present the unemployment rate 
in the voivodship. 

Source: own elaboration. 

 
We find that Mazowieckie voivodship has the largest difference between its 

minimum and maximum values of unemployment rates between LMAs (figure 1). 
The registered unemployed to the working age population ratio was lower in 
LMA 1550 (containing Warsaw)8 (4.08%) than in the neighbouring LMAs (4.96%-
                      

8 The numbers next to LMA are numbers assigned by an algorithm to an LMA and thus they have 
no interpretation. 
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13.79%). LMA 1550 has also more sizeable ratio of the employed to the working 
age population in 2011 than the neighbouring LMAs (85.66% in comparison to 
31.70%-47.46% in the neighbouring LMAs). This indicates relatively considera-
ble differences between LMAs in voivodships. 

LMA 1550 has the largest size of all LMAs in Mazowieckie voivodship with 
979,478 inhabitants. Nevertheless, one could expect it to be even larger be-
cause of frequent commuting flows to Warsaw (including flows from distant gmi-
nas). The reason it does not happen is that commuting in both directions is cru-
cial while defining LMAs. Thus when the neighbouring LMAs were analyzed, all 
of them turned out to have stronger9 commuting links inside themselves than 
with the LMA 1550. The neighbouring LMAs fulfil the conditions to be valid LMAs 
on their own.  

In turn, the ratio of incoming flows was highest in big cities. Nevertheless, in 
some LMAs in spite of low ratio of incoming flows to population aged over 14 
years old and in spite of small population, the percentage of the employed per-
sons exceeded 50% (figure 2).  

 
Figure 2. Flows and employment ratios in 2011 – population aged 15 years or more 

 
Source: own elaboration. 

For example, below Nowy Tomyśl, there are two LMAs with high ratio of the 
employed persons to the population and low ratio of incoming flows to the popu-
lation (figure 2). Both Grojec LMA and Grodzisk Wielkopolski LMA are neigh-
                      

9 Namely, more commuters travel to work inside particular LMAs (other than LMA 1550) than they 
travel to work between a neighbouring LMA and LMA 1550. 
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bouring to LMAs containing big cities (Warsaw and Poznan respectively). This 
fact causes a small number of incoming flows, relatively big number of outcom-
ing flows (mainly to the neighbouring big cities) and high value of the ratio of the 
employed persons to the population. In general, LMAs are not homogeneous. 
For good policy making, one should consider not only their borders but also the 
specificity of the regions where employees commute. 

 
6. PROBLEMS 

 
Poland-specific problems appeared, which were not solved by the EU-TTWA 

algorithm. The knowledge about them may help to delineate LMAs in countries 
without specified commuting areas.  

We found commuters between very distant gminas. The reason was that un-
der certain conditions the algorithm assigned people to work in the headquarters 
instead of in the actual place of work due to the specificity of Polish registers. 
Even though in tax registers information on the fact of travelling to work is avail-
able (and it was used), it has not fully solved the problem, at least for those who 
travel to work10. The solution could be to analyze distance between gminas and 
to neglect insignificant links between gminas located unreasonably far from each 
other and with no fast transportation connections to commute. It is intended to 
be tested on the next Census data. 

After running the algorithm, 26 non-contiguous LMAs appeared. According to 
Eurostat’s requirements non-contiguous LMAs can be accepted only if they con-
tain an administrative island (a non-contiguous part of a LAU-2). A contiguity for 
all the other LMAs in each country must be provided during the fine tuning pro-
cess. Gminas which caused non-contiguity were ordered by size and each of 
them was assigned to the neighbouring LMA where it had the maximum value of 
expression (2). Moreover, we found 352 towns surrounded by a rural part of the 
gmina. In consequence, the town and the rural gmina may have been initially 
assigned to different LMAs. It resulted in ‘holes’ in LMAs. During the fine tuning 
process both parts were attached to the same LMA. 

An example of non-contiguity was the LMA 1613 that consisted of two sepa-
rate parts - part one with four gminas and 9,636 residents and part two with 
three gminas and 7,795 residents (Map 2). To provide contiguity we could split 
the LMA into two independent LMAs. However, self-containment of the ‘part two’ 
was lower than the required threshold. As for ‘part one’, the condition of being a 
valid LMA was not met. Both arguments were against creating two LMAs out of 
one. Therefore we calculated the number of ‘attracting gminas’ using the central-
ity index ݇ܥ (if 1<݇ܥ then ‘gmina is attracting’).  
                      

10 The reason is that for all the enterprises in the Census at most three last registered places of 
business activity were available. Moreover, for some companies in the Census data only the head-
quarters’ address was available. 
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Table 5. Centrality index values for gminas in LMA 1613 

Territorial code of a gmina Gmina Part Centrality index value 

1608024  ...............................................  Gorzów Śląski one 1.39 
1608044  ...............................................  Praszka one 1.02 
1608045  ...............................................  Praszka one 0.20 
1608062  ...............................................  Rudniki one 0.15 
1608072  ...............................................  Zębowice two 0.17 
1609084  ...............................................  Ozimek two 0.95 
1609085  ...............................................  Ozimek two 2.35 

Source: own elaboration on the Population Census 2011 data. 

 
Map 2. Non-contiguous LMA 1613 (Praszka) and LMA 1612 (Olesno) 

  
Source: own elaboration using the LabourMarketAreas R-package. 

Part one contained two attracting gminas and part two had only one (table 5). 
Therefore, we let part one to stay as an autonomous LMA11 and we split the ‘part 
two’ into gminas. Each of them was assigned to one of the neighbouring LMAs 
with the largest commuting flows with it. After the new assignment of gminas to 
the neighbouring LMAs, the validity condition was still met.  
                      

11 Eurostat allows for a small number of LMAs which do not fulfil the validity condition if there are 
required changes during the fine-tuning process. In consequence, the part one was accepted as an 
LMA. 



M. Ryczkowski, P. Stopiński    Labour market areas in Poland 365 
 

 

7. SUMMARY 
 

EU-TTWA algorithm allowed us to delineate 339 Labour Market Areas in Po-
land. The novelty is that we use a more recent version of the Mike Coombes, 
Office for National Statistics (2015) algorithm. Moreover, the final version of the 
algorithm was a result of the discussions during Eurostat Task Force’s meetings, 
seminars and workshops. Therefore, we maintained international comparability 
with the results of European countries by following the recent EU guidelines. We 
add new insights into the literature as we select typical input parameters for Po-
land. We also propose the usage of Polish taxonomy as a way to select values 
of the input parameters. Labour Market Areas may be used for compiling and 
evaluating data related to the road, train, plane, or bus infrastructure, the spatial 
distribution of pre-schools or kindergartens, the timetables of public transporta-
tion, the premises for investments and many more. After all, right policies, deci-
sions and investments resting on exact regional data (instead on historical 
boundaries) are required in modern knowledge-based economies. Labour Mar-
ket Areas by delivering new spatial information may accelerate the growth of an 
economy. Nevertheless, for good policy making, one should consider not only 
their borders but also the specificity of the region where employees commute as 
we found large dissimilarities between LMAs. A future task would be to differen-
tiate LMAs by occupational categories, employment by gender, mode of travel to 
work and other. The revised LMAs should be delineated after the Population 
Census 2021 to assess the changes in the Polish commuting patterns within 
recent decade. Finally, delimitation of industrial districts seems also to be 
a promising concept. Assessing the functional polycentricity may be applied to 
relatively small regions (Hanssens et al., 2014). Detailed analysis of functional 
regions covering, for instance, an urban area of Silesian Metropolis could be an 
interesting case study as well (see Sojka, 2013). 
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OBSZARY RYNKU PRACY W POLSCE 

Streszczenie 

Celem artykułu jest wyznaczenie obszarów rynku pracy w Polsce przy wyko-
rzystaniu metody EU-TTWA opracowanej pod auspicjami Eurostatu. Wykorzy-
stując wspomnianą metodę otrzymano ponad 300 obszarów rynku pracy składa-
jących się z gmin. W artykule opisano charakterystyczne dla Polski problemy 
i rozwiązania, które przyjęto. Przeprowadzono także porównanie liczby obsza-
rów rynku pracy w państwach, w których wyznaczono za pomocą tego algo-
rytmu wspomniane obszary uwzględniając gęstość zaludnienia, liczbę ludności 
oraz wielkość danego państwa. W pracy zaproponowaliśmy wykorzystanie me-
tody taksonomicznej celem wyboru parametrów wejściowych w algorytmie  
EU-TTWA. Obszary rynku pracy mogą dostarczać wartościowej informacji prze-
strzennej. Niemniej jednak okazały się one niejednorodne pod kątem wybranych 
statystyk. Dlatego właściwa polityka gospodarcza nie powinna ograniczać się 
wyłącznie do interpretowania ich granic. 

Słowa kluczowe: obszary funkcjonalne, obszary rynku pracy, dojazdy do 
pracy 

 
LABOUR MARKET AREAS IN POLAND 

Abstract 

The aim of the article is to delineate Labour Market Areas (LMAs) in Poland 
with the use of the European version of the Travel to Work Areas (EU-TTWA) 
methodology that was developed under Eurostat auspices. We received over 
300 areas that consist of LAU-2 units (gminas) – the smallest administrative 
regions in Poland. We discuss Poland-specific results and problems. We com-
pare numbers of LMAs in countries with EU-TTWA-delineated LMAs in relation 
to population density, total population and area. We propose the taxonomic rank 
method to select the parameter values for the EU-TTWA algorithm. LMAs may 
deliver useful spatial information, although one needs to account for their heter-
ogeneity. 

Keywords: functional regions, labour market areas, travel to work, commuting 
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